val_loss=[] val_epoch_loss=0 val_loss=loss_function(y_pred,y) val_epoch_loss += val_loss.item() val_epoch_loss /= step val_loss.append(val_epoch_loss)这段代码的含义
时间: 2023-09-18 20:16:14 浏览: 105
这段代码是在进行模型训练的过程中,计算每个 epoch(训练轮数)的验证集损失(validation loss)并将其存储在一个列表中。具体含义如下:
- `val_loss=[]`:定义一个空列表,用于存储每个 epoch 的验证集损失。
- `val_epoch_loss=0`:定义一个变量 `val_epoch_loss`,用于累加每个 batch(批次)的验证集损失。
- `val_loss=loss_function(y_pred,y)`:使用预测值 `y_pred` 和真实值 `y` 计算当前 batch 的验证集损失。
- `val_epoch_loss += val_loss.item()`:将当前 batch 的验证集损失加到 `val_epoch_loss` 变量中。
- `val_epoch_loss /= step`:计算当前 epoch 的平均验证集损失,其中 `step` 表示当前 epoch 中 batch 的数量。
- `val_loss.append(val_epoch_loss)`:将当前 epoch 的平均验证集损失添加到 `val_loss` 列表中。
这段代码的目的是在训练过程中对模型进行评估,以确保模型在验证集上的性能是否有所提高。每个 epoch 结束时,都会计算一次验证集损失,并将其存储在 `val_loss` 列表中。最终,可以使用这个列表来绘制损失曲线,以帮助分析模型的性能。
相关问题
val _loss=[] val_loss=loss_function(y_pred,y) writer.add_scalar("val_loss", val_loss.item(), epoch+1) val_loss.append(val_loss)
这是一段伪代码,可能是用来记录模型训练过程中的验证损失值。其中,_loss和val_loss都是列表,用来存储损失值。loss_function是损失函数,y_pred是模型的预测结果,y是真实值。writer.add_scalar是用来将损失值写入Tensorboard中,epoch+1表示当前的epoch数。最后一行代码应该是有误的,应该是val_loss.append(val_loss.item()),将当前的验证损失值添加到val_loss列表中。
if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): y_pred = torch.tensor([], dtype=torch.float32, device=device) y = torch.tensor([], dtype=torch.long, device=device) for val_data in val_loader: val_images, val_labels = ( val_data[0].to(device), val_data[1].to(device), ) y_pred = torch.cat([y_pred, model(val_images)], dim=0) y = torch.cat([y, val_labels], dim=0) y_onehot = [y_trans(i) for i in decollate_batch(y, detach=False)] y_pred_act = [y_pred_trans(i) for i in decollate_batch(y_pred)] auc_metric(y_pred_act, y_onehot) result = auc_metric.aggregate() auc_metric.reset() del y_pred_act, y_onehot metric_values.append(result) acc_value = torch.eq(y_pred.argmax(dim=1), y) acc_metric = acc_value.sum().item() / len(acc_value) if result > best_metric: best_metric = result best_metric_epoch = epoch + 1 torch.save(model.state_dict(), os.path.join(root_dir, "best_metric_model.pth")) print("saved new best metric model") print( f"current epoch: {epoch + 1} current AUC: {result:.4f}" f" current accuracy: {acc_metric:.4f}" f" best AUC: {best_metric:.4f}" f" at epoch: {best_metric_epoch}" )
这段代码是在训练过程中的一个epoch结束后进行的验证步骤。在每个val_interval的倍数的epoch结束后,模型会进入评估模式(model.eval()),然后用验证集(val_loader)进行验证。
首先,创建了两个空的tensor,y_pred和y,用于存储预测结果和真实标签。
然后,对于每个val_data,将验证图像(val_images)和标签(val_labels)移动到设备上。
接下来,使用模型(model)对验证图像进行预测,并使用torch.cat将每个batch的预测结果和真实标签拼接在一起,以便计算整个验证集上的指标。
然后,对于y_onehot和y_pred_act,分别对其进行转换操作,具体实现可能在其他地方。
然后,使用auc_metric计算AUC指标,并将结果添加到metric_values列表中。
接着,计算准确率指标(acc_metric),首先使用argmax函数找到每个预测结果的最大值所在的索引,然后使用torch.eq函数将预测结果与真实标签进行比较,得到一个布尔值的tensor,最后将预测正确的个数求和并除以总样本数来计算准确率。
如果当前AUC指标比之前的最佳指标(best_metric)要好,则更新best_metric和best_metric_epoch,并保存模型参数到best_metric_model.pth文件中。
最后,打印当前epoch的信息,包括当前epoch的AUC指标、准确率、最佳AUC指标及其所在的epoch。
阅读全文