theta = np.zeros(10)

时间: 2023-12-03 22:02:36 浏览: 22
`theta = np.zeros(10)` 是一个 Python 代码行,它创建了一个长度为 10 的一维数组 `theta`,并将其所有元素初始化为 0。 这个代码行使用了 Python 中的 NumPy 库,NumPy 是一个重要的 Python 库,它提供了高效的多维数组和矩阵运算功能。在这个代码行中,`np` 是 NumPy 库的别名,它是通过 `import numpy as np` 语句进行定义的。 `np.zeros(10)` 表示创建一个长度为 10 的一维数组,其中所有元素都是 0。这个函数的用法非常灵活,可以创建不同维度和不同元素类型的数组。例如,`np.zeros((3, 4))` 表示创建一个 3 行 4 列的二维数组,其中所有元素都是 0。 在在线学习中,我们通常需要定义一个参数向量 `theta` 来表示模型的参数,然后使用不断的更新来优化这个参数向量。在开始的时候,我们通常会将这个参数向量初始化为一些默认值,例如全零向量。在这个代码行中,我们使用了 `np.zeros(10)` 来创建一个长度为 10 的全零向量,作为模型参数的初始值。
相关问题

import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=["SimHei"] #单使用会使负号显示错误 plt.rcParams['axes.unicode_minus']=False #把负号正常显示 # 读取北京房价数据 path='data.txt' data=pd.read_csv(path,header=None,names=['mianji','jiage']) # data.head() # data.describe() # 绘制散点图 data.plot(kind='scatter',x='mianji',y='jiage') plt.show() def computeCost(X,y,theta): inner=np.power((X*theta.T),2) return np.sum(inner)/(2*len(X)) data.insert(0,'Ones',1) clos=data.shape[1] X=data.iloc[:,0:clos-1] y=data.iloc[:,clos-1:clos] X=np.matrix(X.values) y=np.matrix(y.values) theta=np.matrix(np.array[0,0]) computeCost(X,y,theta) def gradientDescent(X,y,theta,alpha,iters): temp=np.atrix(np.zeros(theta.shape)) parameters=int(theta.ravel().shape[1]) cost=np.zeros(iters) for i in range(iters): error=(X*theta.T)-y for j in range(parameters): term=np.multiply(error,X[:,j]) temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term)) theta=temp cost[i]=computeCost(X,y,theta) return theta,cost alpha=0.01 iters=1000 g,cost=gradientDescent(X,y,theta,alpha,iters) x=np.linspace(data.mianji.min(),data.mianji.max(),100) f=g[0,0]+(g[0,1]*X) fig,ax=plt.subplots(figsize=(12,8)) ax.plot(x,f,'r',label='北京房价') ax.scatter(data.mianji,data.jiage,label='Traning data') ax.legend(loc=4) ax.set_xlabel=('房子面积') ax.set_ylabel=('房子价格') ax.set_title("北京房价格回归图") plt.show()

在这段代码中,有一些问题: 1. `import` 语句应该在每个文件的开头,而不是在代码块的中间。 2. `np.matrix` 应该改为 `np.array`。 3. `theta=np.matrix(np.array[0,0])` 应该改为 `theta=np.array([0,0])`。 4. `temp=np.atrix(np.zeros(theta.shape))` 应该改为 `temp=np.array(np.zeros(theta.shape))`。 5. `ax.set_xlabel=('房子面积')` 和 `ax.set_ylabel=('房子价格')` 应该改为 `ax.set_xlabel('房子面积')` 和 `ax.set_ylabel('房子价格')`。 6. `f=g[0,0]+(g[0,1]*X)` 应该改为 `f=g[0,0]+(g[0,1]*x)`。 7. 在 `ax.set_title("北京房价格回归图")` 之前,应该添加一行 `plt.rcParams['font.sans-serif']=["SimHei"]` 以使中文标题正常显示。 请按照上述修改方法尝试运行代码并查看结果。

import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=["SimHei"] #单使用会使负号显示错误 plt.rcParams['axes.unicode_minus']=False #把负号正常显示 # 读取北京房价数据 path='data.txt' data=pd.read_csv(path,header=None,names=['mianji','jiage']) # data.head() # data.describe() # 绘制散点图 data.plot(kind='scatter',x='mianji',y='jiage') plt.show() def computeCost(X,y,theta): inner=np.power((X*theta.T),2) return np.sum(inner)/(2*len(X)) data.insert(0,'Ones',1) clos=data.shape[1] X=data.iloc[:,0:clos-1] y=data.iloc[:,clos-1:clos] X=np.array(X.values) y=np.array(y.values) theta=np.array[0,0] computeCost(X,y,theta) def gradientDescent(X,y,theta,alpha,iters): temp=np.array(np.zeros(theta.shape)) parameters=int(theta.ravel().shape[1]) cost=np.zeros(iters) for i in range(iters): error=(X*theta.T)-y for j in range(parameters): term=np.multiply(error,X[:,j]) temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term)) theta=temp cost[i]=computeCost(X,y,theta) return theta,cost alpha=0.01 iters=1000 g,cost=gradientDescent(X,y,theta,alpha,iters) x=np.linspace(data.mianji.min(),data.mianji.max(),100) f=g[0,0]+(g[0,1]*x) fig,ax=plt.subplots(figsize=(12,8)) ax.plot(x,f,'r',label='北京房价') ax.scatter(data.mianji,data.jiage,label='Traning data') ax.legend(loc=4) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title("北京房价格回归图") plt.show()

在这段代码中,有几个错误: 1. 第一行和第二行之间应该有一个空行。 2. 导入numpy和pandas模块时,应该使用import语句,每个模块之间应该有一个空行。 3. 在第10行和11行中,应该将plt.rcParams的设置放在import语句之后。 4. 在第14行中,应该将data.insert(0,'Ones',1)改为data.insert(0,'Ones',np.ones(len(data))),以便将1插入到整个列中。 5. 在第16行中,应该将clos改为cols,因为该变量代表“列数”。 6. 在第18行中,应该将theta=np.array[0,0]改为theta=np.array([0,0]),以便创建一个2个元素的数组。 7. 在第25行和26行之间应该有一个空行。 8. 在第27行中,应该将parameters=int(theta.ravel().shape[0])改为parameters=int(theta.ravel().shape[1]),因为该数组是一个2x1的数组。 9. 在第36行中,应该将g,cost=gradientDescent(X,y,theta,alpha,iters)改为g,cost=gradientDescent(X,y,theta,alpha,int(iters)),以确保iters是一个整数。 10. 在第38行和39行之间应该有一个空行。 以下是修正后的代码: ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误 plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示 # 读取北京房价数据 path = 'data.txt' data = pd.read_csv(path, header=None, names=['mianji', 'jiage']) # data.head() # data.describe() # 绘制散点图 data.plot(kind='scatter', x='mianji', y='jiage') plt.show() def computeCost(X, y, theta): inner = np.power((X * theta.T - y), 2) return np.sum(inner) / (2 * len(X)) data.insert(0, 'Ones', np.ones(len(data))) # 将1插入到整个列中 cols = data.shape[1] X = data.iloc[:, 0:cols-1] y = data.iloc[:, cols-1:cols] X = np.array(X.values) y = np.array(y.values) theta = np.array([0, 0]) # 创建一个2个元素的数组 computeCost(X, y, theta) def gradientDescent(X, y, theta, alpha, iters): temp = np.array(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost alpha = 0.01 iters = 1000 g, cost = gradientDescent(X, y, theta, alpha, int(iters)) # 确保iters是一个整数 x = np.linspace(data.mianji.min(), data.mianji.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(x, f, 'r', label='北京房价') ax.scatter(data.mianji, data.jiage, label='Traning data') ax.legend(loc=4) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title("北京房价格回归图") plt.show() ```

相关推荐

import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误 plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示 # 读取北京房价数据 path = 'data.txt' data = pd.read_csv(path, header=None, names=['房子面积', '房子价格']) print(data.head(10)) print(data.describe()) # 绘制散点图 data.plot(kind='scatter', x='房子面积', y='房子价格') plt.show() def computeCost(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) data.insert(0, 'Ones', 1) cols = data.shape[1] X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列 y = data.iloc[:,cols-1:cols]#X是所有行,最后一列 print(X.head()) print(y.head()) X = np.matrix(X.values) y = np.matrix(y.values) theta = np.matrix(np.array([0,0])) print(theta) print(X.shape, theta.shape, y.shape) def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost alpha = 0.01 iters = 1000 g, cost = gradientDescent(X, y, theta, alpha, iters) print(g) print(computeCost(X, y, g)) x = np.linspace(data.Population.min(), data.Population.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Population, data.Profit, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title('北京房价拟合曲线图') plt.show()

翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

将以下代码改为C++代码: import scipy.special as sp import numpy as np import numba from numba import njit,prange import math import trimesh as tri fileName="data/blub.obj" outName='./output/blub_rec.obj' # 参数 # 限制选取球谐基函数的带宽 bw=64 # 极坐标,经度0<=theta<2*pi,纬度0<=phi<pi; # (x,y,z)=r(sin(phi)cos(theta),sin(phi)sin(theta),cos(phi)) def get_angles(x,y,z): r=np.sqrt(x*x+y*y+z*z) x/=r y/=r z/=r phi=np.arccos(z) if phi==0: theta=0 theta=np.arccos(x/np.sin(phi)) if y/np.sin(phi)<0: theta+=math.pi return [theta,phi] if __name__=='__main__': # 载入网格 mesh=tri.load(fileName) # 获得网格顶点(x,y,z)对应的(theta,phi) numV=len(mesh.vertices) angles=np.zeros([numV,2]) for i in range(len(mesh.vertices)): v=mesh.vertices[i] [angles[i,0],angles[i,1]]=get_angles(v[0],v[1],v[2]) # 求解方程:x(theta,phi)=对m,l求和 a^m_lY^m_l(theta,phi) 解出系数a^m_l # 得到每个theta,phi对应的x X,Y,Z=np.zeros([numV,1]),np.zeros([numV,1]),np.zeros([numV,1]) for i in range(len(mesh.vertices)): X[i],Y[i],Z[i]=mesh.vertices[i,0],mesh.vertices[i,1],mesh.vertices[i,2] # 求出Y^m_l(theta,phi)作为矩阵系数 sph_harm_values=np.zeros([numV,(bw+1)*(bw+1)]) for i in range(numV): for l in range(bw): for m in range(-l,l+1): sph_harm_values[i,l*(l+1)+m]=sp.sph_harm(m,l,angles[i,0],angles[i,1]) print('系数矩阵维数:{}'.format(sph_harm_values.shape)) # 求解方程组,得到球谐分解系数 a_x=np.linalg.lstsq(sph_harm_values,X,rcond=None)[0] a_y=np.linalg.lstsq(sph_harm_values,Y,rcond=None)[0] a_z=np.linalg.lstsq(sph_harm_values,Z,rcond=None)[0] # 从系数恢复的x,y,z坐标,存为新的点云用于比较 x=np.matmul(sph_harm_values,a_x) y=np.matmul(sph_harm_values,a_y) z=np.matmul(sph_harm_values,a_z) with open(outName,'w') as output: for i in range(len(x)): output.write("v %f %f %f\n"%(x[i,0],y[i,0],z[i,0]))

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

def nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda): # Reshape nn_params back into the parameters Theta1 and Theta2 Theta1 = nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) m = X.shape[0] J=0 X = np.hstack((np.ones((m,1)),X)) y10 = np.zeros((m,num_labels)) a1 = sigmoid(X @ Theta1.T) a1 = np.hstack((np.ones((m,1)), a1)) # hidden layer a2 = sigmoid(a1 @ Theta2.T) # output layer for i in range(1,num_labels+1): y10[:,i-1][:,np.newaxis] = np.where(y==i,1,0) for j in range(num_labels): J = J + sum(-y10[:,j] * np.log(a2[:,j]) - (1-y10[:,j])*np.log(1-a2[:,j])) cost = 1/m* J reg_J = cost + Lambda/(2*m) * (np.sum(Theta1[:,1:]**2) + np.sum(Theta2[:,1:]**2)) # Implement the backpropagation algorithm to compute the gradients grad1 = np.zeros((Theta1.shape)) grad2 = np.zeros((Theta2.shape)) for i in range(m): xi= X[i,:] # 1 X 401 a1i = a1[i,:] # 1 X 26 a2i =a2[i,:] # 1 X 10 d2 = a2i - y10[i,:] d1 = Theta2.T @ d2.T * sigmoidGradient(np.hstack((1,xi @ Theta1.T))) grad1= grad1 + d1[1:][:,np.newaxis] @ xi[:,np.newaxis].T grad2 = grad2 + d2.T[:,np.newaxis] @ a1i[:,np.newaxis].T grad1 = 1/m * grad1 grad2 = 1/m*grad2 grad1_reg = grad1 + (Lambda/m) * np.hstack((np.zeros((Theta1.shape[0],1)),Theta1[:,1:])) grad2_reg = grad2 + (Lambda/m) * np.hstack((np.zeros((Theta2.shape[0],1)),Theta2[:,1:])) return cost, grad1, grad2,reg_J, grad1_reg,grad2_reg

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,