X = meas; Y = species;解释
时间: 2023-11-08 16:06:27 浏览: 271
X = meas; Y = species; 是一个典型的R语言中的命令,用于建立一个由测量值(X)和物种(Y)组成的数据对象。其中,meas是测量值数据框(data frame),包含各个物种的多个测量值,而species则是一个因子(factor),用于指定物种的类型。通过这个命令,我们可以方便地对不同物种之间的测量值进行比较和分析。
相关问题
clear clc close all; load fisheriris.mat X=meas(:,3:4); y=categorical(species); classifier=fitcsvm(X,y,'KernelFunction','linear')
这是一个使用线性核的支持向量机分类器的示例代码,用于对鸢尾花数据集的前两个特征进行分类。categorical() 函数将鸢尾花的种类转换为分类数据类型。fitcsvm() 函数用于训练支持向量机分类器。请注意,在这个示例中,我们只使用了部分数据来训练分类器,因为我们只使用了第三个和第四个特征来训练分类器。如果您需要使用所有特征,您可以将X设置为meas,即X=meas。
load fisheriris; X = meas(:,3:4); Y = species; cv = cvpartition(Y,'holdout',0.3); % 30% 的数据用于测试 X_train = X(cv.training,:); Y_train = Y(cv.training,:); X_test = X(cv.test,:); Y_test = Y(cv.test,:); svm_model = fitcecoc(X_train, Y_train); Y_pred = predict(svm_model,X_test); accuracy = sum(Y_pred==Y_test)/length(Y_test); 未定义与 'cell' 类型的输入参数相对应的运算符 '=='。
这个错误是因为 Y_train 和 Y_test 变量被定义为 cell 类型,而在计算准确率时使用了 "==" 运算符,但是该运算符不能用于 cell 类型的变量。
你需要先将 Y_train 和 Y_test 转换为数值类型(如 double 或 int),然后再计算准确率。可以使用以下代码进行转换:
```
Y_train = grp2idx(Y_train);
Y_test = grp2idx(Y_test);
```
这将把 Y_train 和 Y_test 转换为数字索引,使其可以与 predict 函数的输出进行比较。然后,你可以使用以下代码计算准确率:
```
accuracy = sum(Y_pred==Y_test)/numel(Y_test);
```
这将计算预测结果与测试集标签相同的样本数,并将其除以测试集样本总数,从而得到准确率。
阅读全文