adam优化器在pycharm中深度学习训练时怎么调用
时间: 2023-11-09 21:21:41 浏览: 237
在PyCharm中使用Adam优化器,需要使用深度学习框架(如TensorFlow或PyTorch)来构建模型和训练。以下是使用TensorFlow和PyTorch的示例代码:
使用TensorFlow:
```python
import tensorflow as tf
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
# 构建模型
model = tf.keras.Sequential([...])
# 编译模型
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_val, y_val))
```
使用PyTorch:
```python
import torch
import torch.nn as nn
import torch.optim as optim
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 构建模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
[...]
model = Net()
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
```
在这些示例中,我们首先创建了一个Adam优化器对象,然后将其传递给模型的compile()或optimizer参数。在训练过程中,我们使用优化器的step()方法来更新模型参数。
阅读全文