DDPG的实现代码怎么写呢
时间: 2023-04-02 17:04:40 浏览: 89
DDPG的实现代码需要结合具体的应用场景和数据集进行编写,需要使用深度学习框架如TensorFlow或PyTorch进行实现。具体实现过程可以参考相关的论文和代码库,也可以通过学习相关的课程和教材来掌握。
相关问题
ddpg算法代码matlab实现
抱歉,我无法提供您所需的MATLAB实现的DDPG算法代码。但是,我可以为您提供DDPG算法的Python实现示例代码。以下是一个简单的DDPG算法的Python实现示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
# 定义Actor网络
class Actor(tf.keras.Model):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.max_action = max_action
self.fc1 = layers.Dense(400, activation='relu')
self.fc2 = layers.Dense(300, activation='relu')
self.out = layers.Dense(action_dim, activation='tanh')
def call(self, state):
x = self.fc1(state)
x = self.fc2(x)
x = self.out(x)
return self.max_action * x
# 定义Critic网络
class Critic(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = layers.Dense(400, activation='relu')
self.fc2 = layers.Dense(300, activation='relu')
self.out = layers.Dense(1)
def call(self, state, action):
x = tf.concat([state, action], axis=1)
x = self.fc1(x)
x = self.fc2(x)
x = self.out(x)
return x
# 定义DDPG算法
class DDPG:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action)
self.critic = Critic(state_dim, action_dim)
self.target_actor = Actor(state_dim, action_dim, max_action)
self.target_critic = Critic(state_dim, action_dim)
self.target_actor.set_weights(self.actor.get_weights())
self.target_critic.set_weights(self.critic.get_weights())
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=0.002)
def get_action(self, state):
state = tf.expand_dims(tf.convert_to_tensor(state), 0)
action = self.actor(state)
return action[0]
def train(self, replay_buffer, batch_size=64, discount=0.99, tau=0.005):
states, actions, next_states, rewards, dones = replay_buffer.sample_batch(batch_size)
states = tf.convert_to_tensor(states)
actions = tf.convert_to_tensor(actions)
next_states = tf.convert_to_tensor(next_states)
rewards = tf.convert_to_tensor(rewards, dtype=tf.float32)
dones = tf.convert_to_tensor(dones, dtype=tf.float32)
with tf.GradientTape() as tape:
target_actions = self.target_actor(next_states)
target_q_values = self.target_critic(next_states, target_actions)
target_q_values = rewards + (1 - dones) * discount * target_q_values
q_values = self.critic(states, actions)
critic_loss = tf.reduce_mean(tf.square(q_values - target_q_values))
critic_grad = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_grad, self.critic.trainable_variables))
with tf.GradientTape() as tape:
actions = self.actor(states)
critic_value = self.critic(states, actions)
actor_loss = -tf.reduce_mean(critic_value)
actor_grad = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grad, self.actor.trainable_variables))
for t, e in zip(self.target_actor.trainable_variables, self.actor.trainable_variables):
t.assign(t * (1 - tau) + e * tau)
for t, e in zip(self.target_critic.trainable_variables, self.critic.trainable_variables):
t.assign(t * (1 - tau) + e * tau)
# 创建DDPG对象并进行训练
ddpg = DDPG(state_dim, action_dim, max_action)
replay_buffer = ReplayBuffer()
for episode in range(max_episodes):
state = env.reset()
total_reward = 0
for t in range(max_steps):
action = ddpg.get_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, next_state, reward, done)
if replay_buffer.size() > batch_size:
ddpg.train(replay_buffer, batch_size)
state = next_state
total_reward += reward
if done:
break
print('Episode:', episode, 'Total Reward:', total_reward)
# 使用训练好的DDPG模型进行预测
state = env.reset()
for t in range(max_steps):
action = ddpg.get_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
if done:
break
```
请注意,上述代码仅为DDPG算法的简单实现示例,具体实现可能因应用场景的不同而有所变化。您可以根据自己的需求进行修改和扩展。
ddpg实现cartpolo的pytorch代码
下面是使用PyTorch实现DDPG算法在CartPole上的代码示例:
```python
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# DDPG Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 400)
self.fc2 = nn.Linear(400, 300)
self.fc3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = self.max_action * torch.tanh(self.fc3(x))
return x
# DDPG Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 400)
self.fc2 = nn.Linear(400, 300)
self.fc3 = nn.Linear(300, 1)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# DDPG算法
class DDPG:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.memory = ReplayBuffer(1000000, state_dim, action_dim)
self.batch_size = 128
self.gamma = 0.99
self.tau = 0.001
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self):
if len(self.memory) < self.batch_size:
return
state, action, next_state, reward, done = self.memory.sample(self.batch_size)
state = torch.FloatTensor(state).to(device)
action = torch.FloatTensor(action).to(device)
next_state = torch.FloatTensor(next_state).to(device)
reward = torch.FloatTensor(reward).to(device)
done = torch.FloatTensor(1 - done).to(device)
# 计算actor的loss
actor_loss = -self.critic(state, self.actor(state)).mean()
# 计算critic的loss
next_action = self.actor_target(next_state)
target_Q = self.critic_target(next_state, next_action)
target_Q = reward + (done * self.gamma * target_Q).detach()
current_Q = self.critic(state, action)
critic_loss = F.mse_loss(current_Q, target_Q)
# 更新Actor和Critic网络的参数
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# 更新Actor和Critic的目标网络参数
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
def save(self, filename):
torch.save(self.actor.state_dict(), filename + "_actor")
torch.save(self.critic.state_dict(), filename + "_critic")
def load(self, filename):
self.actor.load_state_dict(torch.load(filename + "_actor"))
self.critic.load_state_dict(torch.load(filename + "_critic"))
# 经验回放缓存区
class ReplayBuffer:
def __init__(self, max_size, state_dim, action_dim):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.reward = np.zeros((max_size, 1))
self.done = np.zeros((max_size, 1))
def add(self, state, action, next_state, reward, done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.done[self.ptr] = done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
idx = np.random.randint(0, self.size, size=batch_size)
return (
self.state[idx],
self.action[idx],
self.next_state[idx],
self.reward[idx],
self.done[idx]
)
# 使用CartPole环境进行DDPG算法训练
if __name__ == "__main__":
env = gym.make("CartPole-v1")
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ddpg = DDPG(state_dim, action_dim, max_action)
total_timesteps = 0
timesteps_since_eval = 0
episode_num = 0
done = True
while total_timesteps < 1000000:
if done:
if total_timesteps != 0:
print("Total Timesteps: {} Episode Num: {} Reward: {}".format(total_timesteps, episode_num, episode_reward))
ddpg.train()
obs = env.reset()
done = False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
if total_timesteps < 10000:
action = env.action_space.sample()
else:
action = ddpg.select_action(np.array(obs))
action = np.clip(action, -max_action, max_action)
new_obs, reward, done, _ = env.step(action)
episode_reward += reward
ddpg.memory.add(obs, action, new_obs, reward, done)
obs = new_obs
total_timesteps += 1
episode_timesteps += 1
timesteps_since_eval += 1
if total_timesteps % 10000 == 0:
ddpg.save("ddpg")
if timesteps_since_eval >= 5000:
timesteps_since_eval %= 5000
eval_reward = eval_policy(ddpg)
print("Timestep: {} Eval reward: {}".format(total_timesteps, eval_reward))
```
其中,`Actor`和`Critic`分别为Actor网络和Critic网络的实现,`DDPG`为DDPG算法的实现,`ReplayBuffer`为经验回放缓存区的实现。
在使用CartPole环境进行训练时,可以通过调整参数来获得更好的结果。例如,可以通过调整`batch_size`、`gamma`和`tau`等参数来改进DDPG算法的性能。
阅读全文