代码解释 # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz)
时间: 2023-06-13 14:06:36 浏览: 121
这段代码主要是用于设置数据加载器。首先,判断是否是使用网络摄像头(`webcam`变量),如果是则将`view_img`设置为`True`,这将在可视化时显示摄像头视频。同时,为了加速图像大小的推理,设置`torch.backends.cudnn.benchmark`为`True`。如果不是使用网络摄像头,则将`save_img`设置为`True`,表示需要将结果保存为图片文件。接着,根据数据来源(`source`变量)的不同设置不同的数据集加载器。如果是从流(`streams`)中加载数据,则使用`LoadStreams`类加载,同时指定图像尺寸为`imgsz`。如果是从图像文件中加载数据,则使用`LoadImages`类加载,同样指定图像尺寸为`imgsz`。最后,返回`dataset`数据集对象。
相关问题
代码解释# Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz)
这段代码是用来设置数据加载器的。如果是使用webcam(摄像头)作为输入,就设置view_img为True,同时启用torch.backends.cudnn.benchmark,以加速不变图像大小的推断。然后使用LoadStreams来加载数据集,设置图像大小为imgsz。如果不是使用webcam作为输入,就设置save_img为True,使用LoadImages来加载数据集,同样设置图像大小为imgsz。
代码解释 # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride)
这段代码的作用是设置数据加载器。具体来说,它检查是否使用摄像头,如果使用,则检查是否需要显示图像。接着,它启用cudnn.benchmark,以加速常量图像大小的推断。然后,如果使用摄像头,它将创建一个名为dataset的LoadStreams对象,该对象从指定的源加载实时视频流,如果不是,则创建一个名为dataset的LoadImages对象,该对象从指定的源加载静态图像。在这两种情况下,img_size和stride参数指定了加载的图像的大小和步幅。vid_path和vid_writer变量分别用于记录视频的输出路径和视频写入器对象。
阅读全文