def get_train_loader(engine, dataset, s3client=None): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'hha_root':config.hha_root_folder, 'mapping_root': config.mapping_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch, s3client=s3client) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler这段代码是什么意思
时间: 2023-06-08 18:04:00 浏览: 181
这段代码是一个函数,作用是返回一个用于训练的数据加载器和采样器。函数接收三个参数:engine表示训练引擎,dataset表示加载数据的数据集,s3client是一个用于访问AWS S3的客户端对象。
函数内部会根据不同的参数设置对数据进行预处理和组织,并构建一个数据加载器和采样器。其中数据加载器用于返回一个数据集合,用于模型的训练;而采样器用于决定数据加载器中数据的顺序,从而能让训练结果尽可能优秀。
函数中也包含一些特别的代码,例如:如果数据集被分布在多个节点上,则需要使用分布式采样器来组织数据集中的数据,以便高效地并行训练。
相关问题
y_train = train_loader.dataset.train_labels.numpy()
`y_train = train_loader.dataset.train_labels.numpy()` 这行代码将训练数据集的标签转换为 NumPy 数组并赋值给变量 `y_train`。
在这行代码中,`train_loader` 是一个数据加载器对象,`train_loader.dataset` 是该加载器对应的数据集对象。`train_labels` 是数据集对象中的一个属性,它代表训练数据集的标签。
`numpy()` 是一个 NumPy 数组的方法,它将 PyTorch 张量(tensor)对象转换为 NumPy 数组。
通过这行代码,将训练数据集的标签转换为 NumPy 数组,并将结果赋值给变量 `y_train`。你可以在后续的代码中使用 `y_train` 来处理或分析训练数据集的标签数据。
def get_loader(data_name, img_size=256, batch_size=8, split='test', is_train=False, dataset='CDDataset'): dataConfig = data_config.DataConfig().get_data_config(data_name) root_dir = dataConfig.root_dir label_transform = dataConfig.label_transform什么意思
这段代码定义了一个名为get_loader的函数,它的参数包括data_name(数据集名称)、img_size(图像大小)、batch_size(批处理大小)、split(数据集划分方式)、is_train(是否为训练集)和dataset(数据集类型)。函数中使用了dataConfig变量来获取数据配置信息,包括数据集根目录和标签转换方式。该函数的作用是用于加载数据集。