while i < j: try: lable = ecgClassSet.index(annotation.symbol[i]) x_train = rdata[Rlocation[i]-99:Rlocation[i] +201] #-99+201 X_data.append(x_train) Y_data.append(lable) i += 1 except ValueError: i += 1 return这段代码是什么意思
时间: 2024-02-14 07:09:43 浏览: 91
这段代码是一个函数的实现,函数的作用是将ECG信号数据和对应的标签转换为机器学习模型的训练数据。具体实现如下:
- 函数接受两个参数:annotation和rdata,分别代表ECG信号的标签和数据。
- 函数首先定义了一个空列表X_data和Y_data,用于存储训练数据。
- 然后通过while循环遍历标签列表annotation,将每个标签转换为对应的数字标签(lable)。
- 如果当前标签不在ecgClassSet列表中,则跳过该标签。
- 如果当前标签在ecgClassSet列表中,则根据该标签对应的R波位置(Rlocation)从rdata中提取一个长度为301的ECG信号片段(其中心为R波位置,左右各扩展100个采样点)作为训练数据,将该数据添加到X_data列表中,将对应的数字标签添加到Y_data列表中。
- 最后,当遍历完所有标签后,函数返回X_data和Y_data两个列表。
因此,这段代码的作用是将ECG信号数据和对应的标签转换为机器学习模型的训练数据。
相关问题
class RandomDataset(torch.utils.data.Dataset): def __init__(self, data, length): self.data = data self.len = length def __getitem__(self, index): # print("self.data:", self.data.shape) return torch.Tensor(self.data[index, :, :, :]).float() def __len__(self): return self.len trn_loader = torch.utils.data.DataLoader(dataset=RandomDataset(Training_lable, 89600), batch_size=args.batch_size, shuffle=True, **kwopt, drop_last=False) return trn_loader
这段代码定义了一个名为 "RandomDataset" 的数据集类,并定义了该类的构造函数、__getitem__ 和 __len__ 方法。构造函数 __init__ 接收两个参数:data 和 length。其中,data 是输入数据,length 是数据集的长度。__getitem__ 方法用于获取指定索引的数据。在该方法中,代码首先从输入数据中获取指定索引的数据,然后将其转换成 torch.Tensor,并将其返回。__len__ 方法返回该数据集的长度。
接下来,代码创建了一个名为 "trn_loader" 的数据加载器,该加载器使用 RandomDataset 类创建数据集,并使用 batch_size、shuffle 和 **kwopt 等参数进行配置。最后,代码返回了该数据加载器。该代码的目的是将训练数据和标签转换成 torch.Tensor,并创建一个 PyTorch 数据加载器,以便进行机器学习模型的训练。
path = 'F:\GTSRB-德国交通标志识别图像数据' csv_files = [] for dirpath, dirnames, filenames in os.walk(path, topdown=False): for filename in filenames: if filename.endswith('.csv'): csv_files.append(os.path.join(dirpath, filename)) #%% import matplotlib.image as mpimg test_image=[] test_lable=[] x='' csv=csv_files[1] #F:\GTSRB-德国交通标志识别图像数据\Test.csv base_path = os.path.dirname(csv) # read csv data trafficSigns = [] with open(csv,'r',newline='') as file: header = file.readline() header = header.strip() header_list = header.split(',') print(header_list) #print(header_list[6]) for row in file.readlines(): row_data = row.split(',') x=row_data[7] x='F:/GTSRB-德国交通标志识别图像数据/'+x x=x.strip('\n') m=row_data[6] test_lable.append(int(row_data[6])) test = Image.open(x) test = test.resize((48,48),Image.ANTIALIAS) test = np.array(test) test_image.append(test) #%% test_data = np.array(test_image) #%% test_lable = np.array(test_lable) #%% #标签进行one-hot编码 labels = test_lable one_hot_labels = tf.one_hot(indices=labels,depth=43, on_value=1, off_value=0, axis=-1, dtype=tf.int32, name="one-hot") #%% #print(one_hot_labels.shape) test_datagen = ImageDataGenerator( rescale=1. /255 ) test_data_generator = test_datagen.flow( x=test_data, y=one_hot_labels, #target_size=(48, 48), batch_size=32 #class_mode='categorical' ) #%% print(test_lable)
这段代码的功能是读取指定路径下的CSV文件,并根据CSV文件中的信息加载图像数据和标签。下面是对这段代码的解释:
1. 首先,通过使用`os.walk`函数遍历指定路径下的所有文件和文件夹,并将以`.csv`结尾的文件路径添加到`csv_files`列表中。
2. 接下来,导入所需的库,其中`matplotlib.image`用于读取图像数据。
3. 定义一个空列表`test_image`和`test_label`用于存储图像数据和标签。
4. 通过选择一个CSV文件路径,例如`csv_files[1]`,并获取其所在目录的路径。
5. 打开CSV文件,读取文件中的内容。首先读取文件的第一行,作为列名,并将其转换为列表形式存储在`header_list`中。
6. 接下来,遍历文件的每一行,将每行数据转换为列表形式存储在`row_data`中。在这个过程中,从第7个位置获取图像文件的路径,并将其与基本路径拼接成完整路径`x`。
7. 将第6个位置的标签值转换为整数,并将其添加到`test_label`列表中。
8. 使用PIL库的`Image.open()`方法打开图像文件,调整图像大小为(48,48),并将其转换为数组形式存储在`test_image`列表中。
9. 将`test_image`列表转换为NumPy数组形式存储在`test_data`中。
10. 将`test_label`列表转换为NumPy数组形式存储在`test_label`中。
11. 使用TensorFlow的`tf.one_hot()`函数对标签进行one-hot编码,将其转换为独热编码形式存储在`one_hot_labels`中。
12. 使用`ImageDataGenerator`函数创建一个测试数据生成器`test_data_generator`,用于在后续的模型评估中生成测试数据批次。
13. 最后,打印输出`test_label`,即测试数据的标签。
阅读全文