粒子滤波matlab代码
时间: 2023-07-03 21:31:19 浏览: 132
粒子滤波的matlab代码
以下是一个基于Matlab的粒子滤波算法的代码示例:
```matlab
function [x_hat, particles_filt] = particle_filter(y, u, particles, w, Q, R)
% y: observation sequence
% u: input sequence
% particles: initial particle set
% w: initial particle weights
% Q: process noise covariance
% R: measurement noise covariance
[N, M] = size(particles); % N: number of particles, M: state dimension
x_hat = zeros(size(particles(:,1))); % initialize state estimate
particles_filt = zeros(size(particles)); % initialize filtered particle set
w_filt = zeros(size(w)); % initialize filtered particle weights
for k = 1:length(y)
% propagate particles through the dynamics model
particles = dynamics_model(particles, u(k), Q);
% compute particle weights
w = measurement_model(y(k), particles, R, w);
% normalize particle weights
w = w./sum(w);
% resample particles
[particles, idx] = resample(particles, w);
w = w(idx);
% save filtered particle set and weights
particles_filt(:,k) = particles;
w_filt(:,k) = w;
% compute state estimate
x_hat = x_hat + sum(bsxfun(@times, particles, w), 1)';
end
end
```
其中,`dynamics_model`和`measurement_model`分别为粒子滤波算法中的状态转移和观测模型函数,`resample`为重采样函数。使用该函数时,需要提供观测序列`y`、输入序列`u`、初始粒子集合`particles`、初始粒子权重`w`、过程噪声协方差矩阵`Q`和测量噪声协方差矩阵`R`。函数将返回最终的状态估计值`x_hat`和滤波后的粒子集合`particles_filt`。
阅读全文