class Circle: public Point{protected: double r;public: Circle(double _x=0, double _y=0, double _r=0): Point(_x, _y), r(_r){} friend istream& operator>>(istream& in, Circle& c){ in>>dynamic_cast<Point&>(c); cout<<"请输入圆的半径: "; in>>c.r; return in; } friend ostream& operator<<(ostream& out, const Circle& c){ out<<"圆心坐标为"<<dynamic_cast<const Point&>(c)<<",半径为"<<c.r; return out; } double area(){ //计算圆的面积 return 3.1415926*r*r; }};

时间: 2024-04-26 18:22:45 浏览: 111
这段代码定义了一个Circle类,它继承自Point类,表示一个圆。其中,数据成员包括圆心坐标x和y,以及半径r。构造函数中使用了基类的构造函数来初始化x和y,而r则使用了初始化列表进行初始化。此外,类中还定义了一个计算圆面积的函数area()。 在这个类中,还重载了输入输出运算符">>"和"<<",用于输入和输出圆的信息。输入运算符中,先调用基类的输入运算符来输入圆心坐标,然后再输入半径r。输出运算符中,先调用基类的输出运算符来输出圆心坐标,然后再输出半径r。 总之,这个Circle类可以用于表示一个圆,并且可以输入输出圆的信息,并计算圆的面积。
相关问题

请以点类Point为基类派生出一个圆类Circle。圆类Circle的数据成员为r(私有属性,存储圆的半径,圆心的点坐标通过继承点类Point加以实现),成员函数有构造函数Circle、计算圆的面积函数Area、计算圆的周长函数Perimeter和输出函数Display,其中构造函数实现基类和圆类的数据成员的初始化,Display函数实现圆心坐标(利用基类Point的Display实现)、圆的半径、圆的面积(利用Area函数实现)和圆的周长(利用Perimeter函数实现)的输出。请编写圆类的定义及成员函数实现,并在主函数中定义圆类对象,验证各个函数的正确性。 说明:圆周率PI的取值为3.14 已知Point类及main代码如下:(不允许改动) class Point { public: ​Point(double xx,double yy); //constructor ​void Display();​ //display point​ private: ​double x,y; //平面的点坐标x,y }; Point::Point(double xx,double yy) {​ ​x=xx; ​y=yy; } void Point::Display() {​ ​cout<<"Point("<<x<<","<<y<<")"<<endl; } int main() { ​double x,y,r; ​cin>>x>>y>>r; //圆心的点坐标及圆的半径 ​Circle C(x,y,r); ​C.Display(); //输出圆心点坐标,圆的半径,圆的面积,圆的周长 ​return 0;

以下是圆类的定义及成员函数实现: ``` #include <iostream> using namespace std; const double PI = 3.14; class Point { public: Point(double xx, double yy); //constructor void Display(); //display point protected: double x, y; //平面的点坐标x,y }; Point::Point(double xx, double yy) { x = xx; y = yy; } void Point::Display() { cout << "Point(" << x << "," << y << ")" << endl; } class Circle : public Point { public: Circle(double xx, double yy, double rr); //constructor double Area(); //计算圆的面积函数 double Perimeter(); //计算圆的周长函数 void Display(); //输出函数 private: double r; //圆的半径 }; Circle::Circle(double xx, double yy, double rr) : Point(xx, yy) { r = rr; } double Circle::Area() { return PI * r * r; } double Circle::Perimeter() { return 2 * PI * r; } void Circle::Display() { Point::Display(); cout << "圆的半径:" << r << endl; cout << "圆的面积:" << Area() << endl; cout << "圆的周长:" << Perimeter() << endl; } int main() { double x, y, r; cin >> x >> y >> r; //圆心的点坐标及圆的半径 Circle C(x, y, r); C.Display(); //输出圆心点坐标,圆的半径,圆的面积,圆的周长 return ; } ``` 在主函数中定义了一个圆类对象C,通过输入圆心的点坐标及圆的半径来初始化该对象,然后调用Display函数输出圆心点坐标,圆的半径,圆的面积和圆的周长。

能补充这段代码吗import javafx.application.Application; import javafx.scene.Scene; import javafx.scene.layout.Pane; import javafx.scene.paint.Color; import javafx.scene.shape.Circle; import javafx.scene.shape.Rectangle; import javafx.scene.shape.Polygon; import javafx.stage.Stage; import java.io.FileInputStream; import java.io.IOException; import java.util.Properties; abstract class Shape { protected Color color; protected double area; protected double perimeter; protected double positionX; protected double positionY; public abstract void calculateArea(); public abstract void calculatePerimeter(); public abstract void draw(Pane pane); public void setPosition(double x, double y) { this.positionX = x; this.positionY = y; } } class CircleShape extends Shape { private double radius; public CircleShape(double radius) { this.radius = radius; this.color = Color.RED; } @Override public void calculateArea() { this.area = Math.PI * Math.pow(radius, 2); } @Override public void calculatePerimeter() { this.perimeter = 2 * Math.PI * radius; } @Override public void draw(Pane pane) { Circle circle = new Circle(radius); circle.setFill(color); circle.setLayoutX(positionX); circle.setLayoutY(positionY); pane.getChildren().add(circle); } } class RectangleShape extends Shape { private double width; private double height; public RectangleShape(double width, double height) { this.width = width; this.height = height; this.color = Color.BLUE; } @Override public void calculateArea() { this.area = width * height; } @Override public void calculatePerimeter() { this.perimeter = 2 * (width + height); } @Override public void draw(Pane pane) { Rectangle rectangle = new Rectangle(width, height); rectangle.setFill(color); rectangle.setLayoutX(positionX); rectangle.setLayoutY(positionY); pane.getChildren().add(rectangle); } } class TriangleShape extends Shape { private double[] points; public TriangleShape(double[] points) { this.points = points; this.color = Color.GREEN; } @Override public void calculateArea() { double x1 = points[0]; double y1 = points[1]; doubl

e x2 = points[2]; double y2 = points[3]; double x3 = points[4]; double y3 = points[5]; this.area = Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0); } @Override public void calculatePerimeter() { double side1 = Math.sqrt(Math.pow(points[0] - points[2], 2) + Math.pow(points[1] - points[3], 2)); double side2 = Math.sqrt(Math.pow(points[2] - points[4], 2) + Math.pow(points[3] - points[5], 2)); double side3 = Math.sqrt(Math.pow(points[4] - points[0], 2) + Math.pow(points[5] - points[1], 2)); this.perimeter = side1 + side2 + side3; } @Override public void draw(Pane pane) { Polygon triangle = new Polygon(points); triangle.setFill(color); triangle.setLayoutX(positionX); triangle.setLayoutY(positionY); pane.getChildren().add(triangle); } } public class Main extends Application { @Override public void start(Stage primaryStage) throws Exception { Pane pane = new Pane(); Properties prop = new Properties(); try { FileInputStream input = new FileInputStream("config.properties"); prop.load(input); input.close(); } catch (IOException ex) { ex.printStackTrace(); } for (int i = 1; i <= 3; i++) { String shapeType = prop.getProperty("shape" + i + ".type"); Shape shape; if (shapeType.equals("circle")) { double radius = Double.parseDouble(prop.getProperty("shape" + i + ".radius")); shape = new CircleShape(radius); } else if (shapeType.equals("rectangle")) { double width = Double.parseDouble(prop.getProperty("shape" + i + ".width")); double height = Double.parseDouble(prop.getProperty("shape" + i + ".height")); shape = new RectangleShape(width, height); } else { double[] points = new double[6]; for (int j = 0; j < 6; j++) { points[j] = Double.parseDouble(prop.getProperty("shape" + i + ".point" + (j+1))); } shape = new TriangleShape(points); } shape.calculateArea(); shape.calculatePerimeter(); double posX = Double.parseDouble(prop.getProperty("shape" + i + ".posX")); double posY = Double.parseDouble(prop.getProperty("shape" + i + ".posY")); shape.setPosition(posX, posY); shape.draw(pane); } Scene scene = new Scene(pane, 500, 500); primaryStage.setScene(scene); primaryStage.show(); } public static void main(String[] args) { launch(args); } } 这段代码实现了一个基于JavaFX的图形绘制应用,它定义了一个抽象类 Shape 和三个子类 CircleShape、RectangleShape 和 TriangleShape,分别对应圆形、矩形和三角形,每个子类都实现了抽象方法 calculateArea()、calculatePerimeter() 和 draw()。这些方法用于计算每个图形的面积、周长和绘制图形。在主类 Main 中,从配置文件 config.properties 中读取每个图形的类型、参数和位置,然后创建相应的图形对象并调用其方法进行计算和绘制。最后将绘制结果显示在 JavaFX 的场景中。
阅读全文

相关推荐

#include <iostream> #include <iomanip> #include <string> using namespace std; class Point { private: string type; double x, y; public: Point(string t = "", double xx = 0, double yy = 0) : type(t), x(xx), y(yy) {} Point(const Point& p) : type(p.type), x(p.x), y(p.y) {} virtual ~Point() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Point& p) { os << "Type: " << p.type << "\nX: " << fixed << setprecision(2) << p.x << "\nY: " << fixed << setprecision(2) << p.y; return os; } virtual void PrintName() { cout << "This is a Point object." << endl; } }; class Circle : public Point { private: double r; public: Circle(string t = "", double xx = 0, double yy = 0, double rr = 0) : Point(t, xx, yy), r(rr) {} Circle(const Circle& c) : Point(c), r(c.r) {} ~Circle() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Circle& c) { os << static_cast<const Point&>(c) << "\nRadius: " << fixed << setprecision(2) << c.r; return os; } virtual void PrintName() { cout << "This is a Circle object." << endl; } }; class Cylinder : public Circle { private: double h; public: Cylinder(string t = "", double xx = 0, double yy = 0, double rr = 0, double hh = 0) : Circle(t, xx, yy, rr), h(hh) {} Cylinder(const Cylinder& cy) : Circle(cy), h(cy.h) {} ~Cylinder() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Cylinder& cy) { os << static_cast<const Circle&>(cy) << "\nHeight: " << fixed << setprecision(2) << cy.h; return os; } virtual void PrintName() { cout << "This is a Cylinder object." << endl; } }; int main() { Point p1("Point1", 1, 2); Point p2("Point2", 3, 4); Circle c1("Circle1", 5, 6, 7); Circle c2("Circle2", 8, 9, 10); Cylinder cy1("Cylinder1", 11, 12, 13, 14); Cylinder cy2("Cylinder2", 15, 16, 17, 18); cout << p1 << endl; cout << p2 << endl; cout << c1 << endl; cout << c2 << endl; cout << cy1 << endl; cout << cy2 << endl; Point* ptr; ptr = &p1; ptr->PrintName(); ptr = &c1; ptr->PrintName(); ptr = &cy1; ptr->PrintName(); return 0; }c:\program files (x86)\microsoft visual c++6.0\myprojects\shiayn6\6.cpp(27) : error C2248: 'type' : cannot access private member declared in class 'Point' c:\program files (x86)\microsoft visual c++6.0\myprojects\shiayn6\6.cpp(8) : see declaration of 'type' 执行 cl.exe 时出错.

#include <iostream>using namespace std;const double PI = 3.14159265358979323846;class Point {public: Point(double xx = 0, double yy = 0) : x(xx), y(yy) {} friend istream& operator>>(istream& is, Point& p); friend ostream& operator<<(ostream& os, const Point& p);protected: double x, y;};istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is;}ostream& operator<<(ostream& os, const Point& p) { os << "(" << p.x << ", " << p.y << ")"; return os;}class Circle : public Point {public: Circle(double xx = 0, double yy = 0, double rr = 0) : Point(xx, yy), r(rr) {} double area() const { return PI * r * r; } friend istream& operator>>(istream& is, Circle& c); friend ostream& operator<<(ostream& os, const Circle& c);protected: double r;};istream& operator>>(istream& is, Circle& c) { is >> static_cast(c) >> c.r; return is;}ostream& operator<<(ostream& os, const Circle& c) { os << "Center: " << static_cast<const Point&>(c) << ", Radius: " << c.r; return os;}class Cylinder : public Circle {public: Cylinder(double xx = 0, double yy = 0, double rr = 0, double hh = 0) : Circle(xx, yy, rr), h(hh) {} double volume() const { return Circle::area() * h; } friend istream& operator>>(istream& is, Cylinder& cy); friend ostream& operator<<(ostream& os, const Cylinder& cy);protected: double h;};istream& operator>>(istream& is, Cylinder& cy) { is >> static_cast<Circle&>(cy) >> cy.h; return is;}ostream& operator<<(ostream& os, const Cylinder& cy) { os << "Base: " << static_cast<const Circle&>(cy) << ", Height: " << cy.h; return os;}int main() { Circle c(0, 0, 1); cout << "Input circle info: "; cin >> c; cout << c << endl; cout << "Circle area: " << c.area() << endl; Cylinder cy(0, 0, 1, 2); cout << "Input cylinder info: "; cin >> cy; cout << cy << endl; cout << "Cylinder volume: " << cy.volume() << endl; return 0;}输出结果是

#include <iostream> #include <string> using namespace std; class Point { protected: string type; double x, y; public: Point() : type("Point"), x(0), y(0) {} Point(double x, double y) : type("Point"), x(x), y(y) {} virtual ~Point() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Point& p) { os << "Type: " << p.type << endl; os << "Coordinates: (" << p.x << ", " << p.y << ")" << endl; return os; } virtual void PrintName() { cout << "Type: " << type << endl; } }; class Circle : public Point { protected: double r; public: Circle() : Point(), r(0) { type = "Circle"; } Circle(double x, double y, double r) : Point(x, y), r(r) { type = "Circle"; } virtual ~Circle() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Circle& c) { os << static_cast<const Point&>(c); os << "Radius: " << c.r << endl; return os; } virtual void PrintName() { cout << "Type: " << type << endl; } }; class Cylinder : public Circle { protected: double h; public: Cylinder() : Circle(), h(0) { type = "Cylinder"; } Cylinder(double x, double y, double r, double h) : Circle(x, y, r), h(h) { type = "Cylinder"; } virtual ~Cylinder() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Cylinder& cy) { os << static_cast<const Circle&>(cy); os << "Height: " << cy.h << endl; return os; } virtual void PrintName() { cout << "Type: " << type << endl; } }; int main() { Point p1(1, 2); cout << p1 << endl; Circle c1(1, 2, 3); cout << c1 << endl; Cylinder cy1(1, 2, 3, 4); cout << cy1 << endl; Point* p; p = &p1; p->PrintName(); p = &c1; p->PrintName(); p = &cy1; p->PrintName(); return 0; } 写出该程序的大致流程

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

毕业设计&课设_宿舍管理系统:计算机毕业设计项目.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

毕业设计&课设_画手交易管理系统:Java 毕设项目.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。