layer_list.append()

时间: 2023-12-26 20:06:12 浏览: 31
This is a Python method that allows you to add an element to the end of a list. For example, if you have an empty list called `layer_list` and want to add the string "input" to it, you can use the `append()` method like this: ``` layer_list = [] layer_list.append("input") ``` Now, `layer_list` will contain one element, which is the string "input". You can continue to use the `append()` method to add more elements to the list.
相关问题

for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]在forward函数中,如果我要使用channel_out变量传入SA_modules中,我该如何在forward函数中计算并得到它,再传入SA_modules中,你可以给我详细的代码吗?

在 forward 函数中,可以定义一个变量 channel_out,用于保存当前 SA_module 的输出通道数。然后在每一次循环时更新 channel_out 的值,并将其传入 SA_module 中。代码如下: ``` def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] channel_out = 0 # 初始化 channel_out for i in range(len(self.SA_modules)): mlps = self.SA_modules[i].mlps # 获取当前 SA_module 的 MLPs # 计算当前 SA_module 的输出通道数 channel_out = sum(mlp[-1] for mlp in mlps) li_xyz, li_features = self.SA_modules[i]( l_xyz[i], l_features[i], channel_out=channel_out # 传入 channel_out ) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0] ``` 在 SA_module 的 forward 函数中,需要修改函数签名,增加一个参数 channel_out,用于指定输出通道数。然后在函数中使用该参数来初始化 MLP 中的第一个元素。代码如下: ``` class PointnetSAModuleMSG(nn.Module): def __init__(self, npoint, radii, nsamples, mlps, use_xyz=True, bn=True): super(PointnetSAModuleMSG, self).__init__() self.npoint = npoint self.radii = radii self.nsamples = nsamples self.bn = bn self.use_xyz = use_xyz self.SA_modules = nn.ModuleList() for j in range(len(mlps)): in_channel = mlps[j][0] mlp = nn.Sequential() for k in range(len(mlps[j])-1): mlp.add_module('layer{}'.format(k), pt_utils.Conv1d(in_channel, mlps[j][k+1], bn=self.bn)) in_channel = mlps[j][k+1] self.SA_modules.append(mlp) def forward(self, xyz, features, channel_out): if self.use_xyz: new_features_list = [xyz.transpose(1, 2)] else: new_features_list = [] for i in range(len(self.radii)): idx, pts_cnt = pt_utils.query_ball_point(self.radii[i], self.nsamples[i], xyz, xyz) grouped_xyz = pt_utils.grouping_operation(xyz, idx) grouped_xyz -= xyz.unsqueeze(-1) if features is not None: grouped_features = pt_utils.grouping_operation(features, idx) grouped_features = torch.cat([grouped_features, grouped_xyz], dim=1) else: grouped_features = grouped_xyz new_features = self.SA_modules[i](grouped_features) new_features = new_features.max(dim=-1)[0] new_features_list.append(new_features) new_features = torch.cat(new_features_list, dim=1) for i in range(len(self.SA_modules)): new_features[:, i:i+1] = self.SA_modules[i][0](new_features[:, i:i+1]) # 初始化 MLP 中的第一个元素 if channel_out != new_features.size(1): # 如果输出通道数不一致,进行升维或降维 new_features = pt_utils.Conv1d(new_features.size(1), channel_out, bn=self.bn)(new_features) new_xyz = pt_utils.gather_operation(xyz, pt_utils.furthest_point_sample(xyz, self.npoint)) return new_xyz, new_features ```

ass Pointnet2MSG(nn.Module): def init(self, input_channels=6, use_xyz=True): super().init() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out这段代码在运行时被提示channel_out,即传入SelfAttention层的张量通道数(512)与第一层卷积的权重通道数(1024)不匹配,你知道是为什么吗。我查到__C.RPN.SA_CONFIG.NPOINTS = [4096, 1024, 256, 64]而__C.RPN.SA_CONFIG.MLPS = [[[16, 16, 32], [32, 32, 64]], [[64, 64, 128], [64, 96, 128]], [[128, 196, 256], [128, 196, 256]], [[256, 256, 512], [256, 384, 512]]]根据以上信息,你知道该如何解决这个维度不匹配的问题吗,是否是因为我添加了注意力机制,而__C.RPN.SA_CONFIG.MLPS没有正确修改的原因呢?你可以给我带有详细注释的解决问题的代码吗?

根据您提供的信息,可能是因为您添加了SelfAttention层,而该层期望输入的张量通道数为512,而您的第一层卷积权重通道数为1024,因此通道数不匹配。 要解决这个问题,您可以考虑修改第一层卷积的权重通道数为512,或者修改SelfAttention层的期望输入张量通道数为1024。 以下是一个可能的修改代码的示例,我在代码中添加了注释以帮助您理解: ``` class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super(Pointnet2MSG, self).__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) # 修改 SelfAttention 层的期望输入张量通道数为 channel_out self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out, channel_out) ) ) skip_channel_list.append(channel_out) # 将 channel_in 修改为 channel_out,以便下一层使用 channel_in = channel_out # 修改第一层卷积的权重通道数为 512 self.first_layer = nn.Sequential( nn.Conv1d(input_channels, 512, kernel_size=1), nn.BatchNorm1d(512), nn.ReLU() ) def forward(self, xyz, features): # 将输入的 features 通过第一层卷积 l0_xyz, l0_points = sample_and_group_all(xyz, features) l0_points = self.first_layer(l0_points) # 依次通过各个 SA 模块 for sa_module in self.SA_modules: l0_xyz, l0_points = sa_module(l0_xyz, l0_points) return l0_xyz, l0_points ``` 需要注意的是,这只是一个示例代码,您需要根据自己的需求进行适当的修改。

相关推荐

运行import arcpy # 定义输入图层和输出图层 input_layer = arcpy.GetParameterAsText(0) output_layer = arcpy.GetParameterAsText(1) # 定义合并条件 merge_field = arcpy.GetParameterAsText(2) # 要合并的字段名 merge_gap = arcpy.GetParameterAsText(3) # 相邻图斑面积差距 # 定义面积筛选条件 selection_field = arcpy.GetParameterAsText(4) # 用于筛选的字段名 selection_value = arcpy.GetParameterAsText(5) # 筛选条件 selection_area = float(arcpy.GetParameterAsText(6)) # 面积筛选阈值 # 进行面积筛选 arcpy.MakeFeatureLayer_management(input_layer, "layer", "{}='{}' AND SHAPE_AREA > {}".format(selection_field, selection_value, selection_area)) # 寻找相邻图斑 arcpy.PolygonNeighbors_analysis("layer", "neighbors", ["FID"]) # 定义合并列表 merge_list = [] # 进行合并 with arcpy.da.SearchCursor("neighbors", ['src_FID', 'nbr_FID', 'src_{}'.format(merge_field)]) as cursor: for row in cursor: if row[0] < row[1]: src_geom = arcpy.da.SearchCursor("layer", ["SHAPE@"], "FID={}".format(row[0])).next()[0] nbr_geom = arcpy.da.SearchCursor("layer", ["SHAPE@"], "FID={}".format(row[1])).next()[0] if src_geom.area < nbr_geom.area: src_geom, nbr_geom = nbr_geom, src_geom if src_geom.area - nbr_geom.area > merge_gap: merge_list.append(row[0]) merge_list.append(row[1]) arcpy.management.Dissolve("layer", output_layer, "{}".format(merge_field), None, "MULTI_PART", "DISSOLVE_LINES") # 删除被合并的图斑 with arcpy.da.UpdateCursor(output_layer, ['FID']) as cursor: for row in cursor: if row[0] in merge_list: cursor.deleteRow()时报错Traceback (most recent call last): File "D:\实验YY\新建文件夹 (2)\批量合并小图斑.py", line 13, in <module> File "c:\program files (x86)\arcgis\desktop10.2\arcpy\arcpy\analysis.py", line 984, in PolygonNeighbors raise e ExecuteError: 执行失败。参数无效。 ERROR 000732: 输入要素: 数据集 layer 不存在或不受支持 执行(PolygonNeighbors)失败。 执行(批量合并小图斑)失败。请改正代码

import idx2numpy import numpy as np from functions import * from two_layer_network import * #导入训练集和训练集对应的标签并将其初始化 X_train,T_train=idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte') X_train,T_train=X_train.copy(),T_train.copy() X_train=X_train.reshape((X_train.shape[0],-1)) T_train=T_train-1 T_train=np.eye(26)[T_train] #导入测试集和测试集对应的标签标签并将其初始化 X_test,T_test=idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte') X_test,T_test=X_test.copy(),T_test.copy() X_test=X_test.reshape((X_test.shape[0],-1)) T_test=T_test-1 T_test=np.eye(26)[T_test] network=TwoLayerNet(input_size=784,hidden_size=45,output_size=26) train_size=X_train.shape[0] batch_size=100 iters_num=100000 learning_rate=0.01 train_loss_list=[] train_acc_list=[] test_acc_list=[] iter_per_epoch=max(train_size/batch_size,1) for i in range(iters_num): batch_mask=np.random.choice(train_size,batch_size) X_batch=X_train[batch_mask] T_batch=T_train[batch_mask] #从数据集里抽取batch_size笔数据 #grad=network.numerical_gradient(X_batch,T_batch)(跑不出来,卡在None None) grad=network.gradient(X_batch,T_batch) #计算梯度 for key in ('W1','b1','W2','b2') : network.params[key]-=learning_rate*grad[key] #误差反向传播法调整参数 loss=network.loss(X_batch,T_batch) train_loss_list.append(loss) #记录学习过程 if i % iter_per_epoch==0: train_acc=network.accuracy(X_train,T_train) test_acc=network.accuracy(X_test,T_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print(train_acc,test_acc) #调整学习率 if i > 0 and i % 1000 == 0 and i<3000: learning_rate *= 0.1 print("learning rate reduced to " + str(learning_rate)) print(network.params) print(train_acc_list[-1],test_acc_list[-1])如果我想存储参数,该怎么做

# coding: utf-8 import sys, os sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定 import numpy as np import matplotlib.pyplot as plt from dataset.mnist import load_mnist from two_layer_net import TwoLayerNet # 读入数据 (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10) iters_num = 10000 # 适当设定循环的次数 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) for i in range(iters_num): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] # 计算梯度 #grad = network.numerical_gradient(x_batch, t_batch) grad = network.gradient(x_batch, t_batch) # 更新参数 for key in ('W1', 'b1', 'W2', 'b2'): network.params[key] -= learning_rate * grad[key] loss = network.loss(x_batch, t_batch) train_loss_list.append(loss) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc)) # 绘制图形 markers = {'train': 'o', 'test': 's'} x = np.arange(len(train_acc_list)) plt.plot(x, train_acc_list, label='train acc') plt.plot(x, test_acc_list, label='test acc', linestyle='--') plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show()什么意思

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]

import arcpy# 定义输入图层和输出图层input_layer = arcpy.GetParameterAsText(0)output_layer = arcpy.GetParameterAsText(1)# 定义合并条件merge_field = arcpy.GetParameterAsText(2) # 要合并的字段名merge_gap = arcpy.GetParameterAsText(3) # 相邻图斑面积差距# 定义面积筛选条件selection_field = arcpy.GetParameterAsText(4) # 用于筛选的字段名selection_value = arcpy.GetParameterAsText(5) # 筛选条件selection_area = float(arcpy.GetParameterAsText(6)) # 面积筛选阈值# 进行面积筛选arcpy.MakeFeatureLayer_management(input_layer, "layer", "{}='{}' AND SHAPE_AREA > {}".format(selection_field, selection_value, selection_area))# 寻找相邻图斑arcpy.PolygonNeighbors_analysis("layer", "neighbors", ["FID"])# 定义合并列表merge_list = []# 进行合并with arcpy.da.SearchCursor("neighbors", ['src_FID', 'nbr_FID', 'src_{}'.format(merge_field)]) as cursor: for row in cursor: if row[0] < row[1]: src_geom = arcpy.da.SearchCursor("layer", ["SHAPE@"], "FID={}".format(row[0])).next()[0] nbr_geom = arcpy.da.SearchCursor("layer", ["SHAPE@"], "FID={}".format(row[1])).next()[0] if src_geom.area < nbr_geom.area: src_geom, nbr_geom = nbr_geom, src_geom if src_geom.area - nbr_geom.area > merge_gap: merge_list.append(row[0]) merge_list.append(row[1])arcpy.management.Dissolve("layer", output_layer, "{}".format(merge_field), None, "MULTI_PART", "DISSOLVE_LINES")# 删除被合并的图斑with arcpy.da.UpdateCursor(output_layer, ['FID']) as cursor: for row in cursor: if row[0] in merge_list: cursor.deleteRow()运行上面代码报错Traceback (most recent call last): File "D:\实验YY\新建文件夹 (2)\批量合并小图斑.py", line 13, in <module> File "c:\program files (x86)\arcgis\desktop10.2\arcpy\arcpy\analysis.py", line 984, in PolygonNeighbors raise e ExecuteError: 执行失败。参数无效。 ERROR 000732: 输入要素: 数据集 layer 不存在或不受支持 执行(PolygonNeighbors)失败。 执行(批量合并小图斑)失败。请改正代码

# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x

class _PointnetSAModuleBase(nn.Module): def init(self): super().init() self.npoint = None self.groupers = None self.mlps = None self.pool_method = 'max_pool' def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor): """ :param xyz: (B, N, 3) tensor of the xyz coordinates of the features :param features: (B, N, C) tensor of the descriptors of the the features :param new_xyz: :return: new_xyz: (B, npoint, 3) tensor of the new features' xyz new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() if new_xyz is None: new_xyz = pointnet2_utils.gather_operation( xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint) ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample) new_features = self.mlpsi # (B, mlp[-1], npoint, nsample) if self.pool_method == 'max_pool': new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pool_method == 'avg_pool': new_features = F.avg_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) else: raise NotImplementedError new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1)你可以给我详细讲解一下这个模块吗,一个语句一个语句的来讲解

最新推荐

recommend-type

multisim仿真电路实例700例.rar

multisim仿真电路图
recommend-type

2007-2021年 企业数字化转型测算结果和无形资产明细

企业数字化转型是指企业利用数字技术,改变其实现目标的方式、方法和规律,增强企业的竞争力和盈利能力。数字化转型可以涉及企业的各个领域,包括市场营销、生产制造、财务管理、人力资源管理等。 无形资产是指企业拥有的没有实物形态的可辨认的非货币性资产,包括专利权、商标权、著作权、非专利技术、土地使用权、特许权等。无形资产对于企业的价值创造和长期发展具有重要作用,特别是在数字经济时代,无形资产的重要性更加凸显。 相关数据及指标 年份、股票代码、股票简称、行业名称、行业代码、省份、城市、区县、行政区划代码、城市代码、区县代码、首次上市年份、上市状态、数字化技术无形资产、年末总资产-元、数字化转型程度。 股票代码、年份、无形资产项目、期末数-元。
recommend-type

quickjs实现C++和js互相调用的代码示例

quickjs实现C++和js互相调用的代码示例
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S