如何将dtype=torch.float64转化为torch.double
时间: 2024-03-09 09:49:47 浏览: 340
在PyTorch中,`torch.float64`和`torch.double`是同一种数据类型。因此,你可以直接使用`torch.double`来表示`torch.float64`类型。如果你需要将一个张量的数据类型从`torch.float64`转换为`torch.double`,你可以使用`to()`方法,如下所示:
```
import torch
x = torch.randn(3, 3, dtype=torch.float64)
print(x.dtype) # 输出 torch.float64
y = x.to(torch.double)
print(y.dtype) # 输出 torch.float64(即 torch.double)
```
注意,这里的`to()`方法返回的是一个新的张量,原来的张量`x`并没有发生改变。如果你想在原地修改张量的数据类型,可以使用`to_()`方法,如下所示:
```
import torch
x = torch.randn(3, 3, dtype=torch.float64)
print(x.dtype) # 输出 torch.float64
x.to_(torch.double)
print(x.dtype) # 输出 torch.float64(即 torch.double)
```
相关问题
torch.set_default_dtype(torch.float64) 什么意思
torch.set_default_dtype(torch.float64) 的意思是将默认的数据类型设置为 64 位浮点数(double precision floating point)。这意味着在没有明确指定数据类型的情况下,所有的 Tensor 对象都将使用 double 类型进行计算。这种设置可以提高计算精度和减少数值误差。
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,下面是使用LDAM损失函数训练模型的代码:
```python
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
# 定义LDAM损失函数
class LDAMLoss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30):
super(LDAMLoss, self).__init__()
m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
m_list = m_list * (max_m / np.max(m_list))
m_list = torch.cuda.FloatTensor(m_list)
self.m_list = m_list
assert s > 0
self.s = s
if weight is not None:
weight = torch.FloatTensor(weight).cuda()
self.weight = weight
self.cls_num_list = cls_num_list
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1
batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1)
x_m = x - batch_m
output = torch.where(index, x_m, x)
if self.weight is not None:
output = output * self.weight[None, :]
target = torch.flatten(target) # 将 target 转换成 1D Tensor
logit = output * self.s
return F.cross_entropy(logit, target, weight=self.weight)
# 定义模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, classes)
model.to(DEVICE)
# 定义优化器和学习率调整器
optimizer = optim.Adam(model.parameters(), lr=model_lr)
scheduler = CosineAnnealingLR(optimizer, T_max=EPOCHS, eta_min=1e-6)
# 定义LDAM损失函数
cls_num_list = [len(dataset_train[dataset_train.targets == t]) for t in range(classes)]
criterion = LDAMLoss(cls_num_list)
# 定义数据加载器
train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True)
# 训练模型
best_acc = 0.0
for epoch in range(start_epoch, EPOCHS + 1):
model.train()
train_loss = 0.0
train_corrects = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
if use_dp:
inputs, labels = dp(inputs, labels)
if use_amp:
with amp.autocast():
inputs, labels = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = criterion(outputs, labels)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
scaler.step(optimizer)
scaler.update()
else:
inputs, labels_a, labels_b, lam = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
optimizer.zero_grad()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_corrects += torch.sum(preds == labels.data)
train_loss /= len(dataset_train)
train_acc = train_corrects.double() / len(dataset_train)
model.eval()
test_loss = 0.0
test_corrects = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
test_corrects += torch.sum(preds == labels.data)
test_loss /= len(dataset_test)
test_acc = test_corrects.double() / len(dataset_test)
# 更新最佳模型
if test_acc > best_acc:
if use_ema:
ema_model.load_state_dict(model.state_dict())
best_acc = test_acc
# 更新学习率
scheduler.step()
# 打印训练结果
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
epoch, EPOCHS, train_loss, train_acc, test_loss, test_acc))
```
阅读全文