mask = np.zeros_like(db.labels_, dtype=bool) AttributeError: 'DBSCAN' object has no attribute 'labels_'
时间: 2023-08-06 11:03:27 浏览: 117
这个错误的原因是在执行以下代码时,DBSCAN对象没有成功地对数据进行拟合,因此没有生成标签属性labels_:
```
db = DBSCAN(eps=0.1, min_samples=5, metric='precomputed')
y = db.fit_predict(S)
```
为了解决这个问题,您可以尝试检查以下几个方面:
1. 确保导入需要的库,包括sklearn.cluster中的DBSCAN类和numpy库中的np模块。
2. 确保数据S已经被正确地加载和处理,并且可以用于DBSCAN算法的拟合。
3. 检查DBSCAN算法的参数是否正确设置,包括eps和min_samples等参数。
4. 检查数据是否存在异常值或者噪声点,这可能会影响DBSCAN算法的拟合结果。如果存在异常值或者噪声点,可以尝试对数据进行清理或者使用其他聚类算法进行处理。
如果您仍然无法解决这个问题,请提供更多的代码和数据信息,以便我更好地帮助您进行排查。
相关问题
roi_mask = np.zeros_like(image_out)
这段代码的作用是创建一个与`image_out`大小和类型相同的全0数组`roi_mask`,用于表示感兴趣区域(ROI)。在图像处理中,我们经常需要在原始图像中定义一个ROI,以便于对这个区域进行特定的处理。这个ROI通常表示为一个二值掩膜(binary mask),其中ROI内部的像素值为1,ROI外部的像素值为0。在这里,我们通过创建一个大小和类型与`image_out`相同的全0数组`roi_mask`,来定义一个与`image_out`相同大小的ROI。在后续的处理中,我们可以使用`roi_mask`来提取ROI内部的像素信息,或者对ROI内部的像素进行特定的处理。
dwxh,dwhh,dwhy = np.zeros_like(wxh), np.zeros_like(Whh),np.zeros_like(Why) dbh, dby = np.zeros_like(bh),np.zeros_like(by) dhnext = np.zeros_like(hs[0]) for t in reversed(range(len(inputs))) : dy = np.copy(ps[t]) for b in range(0,B): dy[targets[t][b],b] -= 1 dwhy += np.dot(dy, hs[t].T) dby += np.expand_dims(np.sum(dy,axis=1),axis=1) dh = np.dot(Why.T, dy)+ dhnext dh = dh * (1-hs[t]*hs[t] ) dbh += np.expand_dims(np.sum(dh,axis=1),axis=1) dWxh += np.dot(dh,xs[t].T) dWhh += np.dot(dh,hs[t - 1].T) dhnext = np.dot(Whh.T,dh) return loss,dWxh,dWhh,dwhy,dbh,dby, hs[len(inputs) - 1] 给这段代码加上注释
```python
# 初始化各个参数的梯度为0
dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(Whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[0])
# 反向传播过程
for t in reversed(range(len(inputs))):
# 计算当前时刻的输出值
dy = np.copy(ps[t])
for b in range(0,B):
dy[targets[t][b], b] -= 1
# 计算各个参数的梯度
dwhy += np.dot(dy, hs[t].T)
dby += np.expand_dims(np.sum(dy, axis=1), axis=1)
dh = np.dot(Why.T, dy) + dhnext
dh = dh * (1 - hs[t] * hs[t])
dbh += np.expand_dims(np.sum(dh, axis=1), axis=1)
dWxh += np.dot(dh, xs[t].T)
dWhh += np.dot(dh, hs[t - 1].T)
dhnext = np.dot(Whh.T, dh)
# 返回损失函数值以及各个参数的梯度和最后一个时刻的隐藏状态
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs) - 1]
```
阅读全文