基于真实环境(经纬度和高度以及约束条件)下的无人机航路规划A星算法Python实现
时间: 2023-05-31 09:05:39 浏览: 140
以下是基于真实环境下的无人机航路规划A星算法的Python实现代码:
```python
import math
import heapq
# 定义节点类
class Node:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
self.g = 0
self.h = 0
self.f = 0
self.parent = None
def __eq__(self, other):
return self.x == other.x and self.y == other.y and self.z == other.z
def __lt__(self, other):
return self.f < other.f
def __repr__(self):
return f"({self.x}, {self.y}, {self.z})"
# 定义A星算法
def astar(start, goal, obstacles, resolution, max_altitude):
# 计算两点之间距离
def distance(n1, n2):
dx = n1.x - n2.x
dy = n1.y - n2.y
dz = n1.z - n2.z
return math.sqrt(dx ** 2 + dy ** 2 + dz ** 2)
# 判断节点是否在障碍物内
def in_obstacle(node, obstacles):
for obstacle in obstacles:
if obstacle[0] <= node.x <= obstacle[3] and \
obstacle[1] <= node.y <= obstacle[4] and \
obstacle[2] <= node.z <= obstacle[5]:
return True
return False
# 判断节点是否越界
def out_of_bounds(node, min_bound, max_bound):
if node.x < min_bound[0] or node.y < min_bound[1] or node.z < min_bound[2] or \
node.x > max_bound[0] or node.y > max_bound[1] or node.z > max_altitude:
return True
return False
# 找到邻居节点
def get_neighbors(node, obstacles, resolution):
neighbors = []
for dx in [-1, 0, 1]:
for dy in [-1, 0, 1]:
for dz in [-1, 0, 1]:
if dx == 0 and dy == 0 and dz == 0:
continue
x = node.x + dx * resolution
y = node.y + dy * resolution
z = node.z + dz * resolution
neighbor = Node(x, y, z)
if in_obstacle(neighbor, obstacles) or out_of_bounds(neighbor, min_bound, max_bound):
continue
neighbors.append(neighbor)
return neighbors
# 计算启发函数
def heuristic(node, goal):
dx = abs(node.x - goal.x)
dy = abs(node.y - goal.y)
dz = abs(node.z - goal.z)
return math.sqrt(dx ** 2 + dy ** 2 + dz ** 2)
# 初始化起点和终点
start_node = Node(start[0], start[1], start[2])
goal_node = Node(goal[0], goal[1], goal[2])
# 设置搜索范围
min_bound = (min(start[0], goal[0]), min(start[1], goal[1]), 0)
max_bound = (max(start[0], goal[0]), max(start[1], goal[1]), max_altitude)
# 初始化open列表和closed列表
open_list = []
closed_list = []
# 将起点加入open列表
heapq.heappush(open_list, start_node)
# 开始搜索
while len(open_list) > 0:
# 取出open列表中f值最小的节点
current_node = heapq.heappop(open_list)
# 判断是否到达终点
if current_node == goal_node:
path = []
while current_node is not None:
path.append(current_node)
current_node = current_node.parent
return path[::-1]
# 将当前节点加入closed列表
closed_list.append(current_node)
# 找到邻居节点并更新g、h、f值
for neighbor in get_neighbors(current_node, obstacles, resolution):
if neighbor in closed_list:
continue
tentative_g = current_node.g + distance(current_node, neighbor)
if neighbor not in open_list:
neighbor.h = heuristic(neighbor, goal_node)
open_list.append(neighbor)
elif tentative_g >= neighbor.g:
continue
neighbor.parent = current_node
neighbor.g = tentative_g
neighbor.f = neighbor.g + neighbor.h
# 如果open列表为空,说明无法到达终点
return None
# 测试代码
start = (0, 0, 0)
goal = (100, 100, 50)
obstacles = [(20, 30, 10, 40, 70, 30), (60, 50, 20, 80, 80, 40)]
resolution = 1
max_altitude = 50
path = astar(start, goal, obstacles, resolution, max_altitude)
if path:
print("路径:")
for node in path:
print(node)
else:
print("无法到达终点!")
```
注:以上代码仅作为参考,实际应用中需要根据具体情况进行修改和优化。
阅读全文