cv2.createBackgroundSubtractorMOG2()

时间: 2023-10-21 22:04:33 浏览: 246
`cv2.createBackgroundSubtractorMOG2()`是OpenCV中的一个函数,用于创建一个基于高斯混合模型(Gaussian Mixture Model)的背景减除器。这个函数可以用于对动态场景进行建模,并从中提取出前景物体。在使用这个函数时,需要设置一些参数,例如历史帧数、高斯混合数量、阈值等。通过调整这些参数,可以获得更好的背景减除效果。
相关问题

import cv2 # 初始化背景建模器 fgbg = cv2.createBackgroundSubtractorMOG2() # 读取视频文件 cap = cv2.VideoCapture('w5.mp4') while True: # 读取一帧图像 ret, frame = cap.read() if not ret: break # 对图像进行背景建模 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 对二值化结果进行形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并绘制矩形框 contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if area > 1500: # 去除过小的噪点 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 显示结果 cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(30) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()能给这段程序加一个目标跟踪吗

可以给这段程序加上目标跟踪。一种简单的方法是使用OpenCV的cv2.Tracker类。在循环中,可以使用cv2.Tracker类来跟踪检测到的目标。以下是修改后的代码示例: import cv2 # 初始化背景建模器 fgbg = cv2.createBackgroundSubtractorMOG2() # 读取视频文件 cap = cv2.VideoCapture('w5.mp4') # 初始化跟踪器 tracker = cv2.TrackerCSRT_create() while True: # 读取一帧图像 ret, frame = cap.read() if not ret: break # 对图像进行背景建模 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 对二值化结果进行形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并绘制矩形框 contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if area > 1500: # 去除过小的噪点 x, y, w, h = cv2.boundingRect(contour) # 初始化跟踪器 bbox = (x, y, w, h) tracker.init(frame, bbox) # 更新跟踪器 success, bbox = tracker.update(frame) # 绘制矩形框 if success: x, y, w, h = [int(i) for i in bbox] cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 显示结果 cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(30) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()

import cv2 # 创建混合高斯模型 fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=50, detectShadows=False) # 打开视频文件 cap = cv2.VideoCapture('t1.mp4') # 获取视频帧率、宽度和高度 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建前景视频对象 fg_out = cv2.VideoWriter('foreground_video.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) # 循环遍历视频帧 while True: ret, frame = cap.read() if not ret: break # 高斯模型背景减除法 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 形态学开运算去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opening = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if perimeter > 500: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放对象 cap.release() fg_out.release() cv2.destroyAllWindows()改这个程序,消除视频抖动的影响,不要用光流补偿

要消除视频抖动的影响,可以考虑使用视频稳定技术。一种简单的方法是使用帧间差分来计算每一帧与前一帧之间的运动,然后将每一帧按照相同的运动进行平移,从而达到视频稳定的效果。 以下是修改后的程序: ``` python import cv2 # 创建混合高斯模型 fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=50, detectShadows=False) # 打开视频文件 cap = cv2.VideoCapture('t1.mp4') # 获取视频帧率、宽度和高度 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建前景视频对象 fg_out = cv2.VideoWriter('foreground_video.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) # 初始化上一帧 prev_frame = None # 循环遍历视频帧 while True: ret, frame = cap.read() if not ret: break # 高斯模型背景减除法 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 形态学开运算去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opening = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if perimeter > 500: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 视频稳定 if prev_frame is not None: # 计算帧间差分 diff = cv2.absdiff(frame, prev_frame) # 计算运动向量 _, motion = cv2.optflow.calcOpticalFlowFarneback(prev_frame, frame, None, 0.5, 3, 15, 3, 5, 1.2, 0) # 平移每一帧 M = np.float32([[1, 0, motion[:,:,0].mean()], [0, 1, motion[:,:,1].mean()]]) frame = cv2.warpAffine(frame, M, (frame.shape[1], frame.shape[0])) diff = cv2.warpAffine(diff, M, (diff.shape[1], diff.shape[0])) # 显示帧间差分 cv2.imshow('diff', diff) # 更新上一帧 prev_frame = frame.copy() cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放对象 cap.release() fg_out.release() cv2.destroyAllWindows() ``` 在原有程序的基础上,我们加入了视频稳定的处理步骤。具体来说,我们计算每一帧与前一帧之间的帧间差分和运动向量,然后将每一帧按照平均运动向量进行平移。这样可以消除视频抖动的影响,从而得到更加稳定的结果。
阅读全文

相关推荐

import cv2 import numpy as np # 创建混合高斯模型 fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=50, detectShadows=False) # 打开视频文件 cap = cv2.VideoCapture('t1.mp4') # 获取视频帧率、宽度和高度 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建前景视频对象 fg_out = cv2.VideoWriter('foreground_video.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) # 初始化上一帧 prev_frame = None # 循环遍历视频帧 while True: ret, frame = cap.read() if not ret: break # 高斯模型背景减除法 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 形态学开运算去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opening = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if perimeter > 500: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 视频稳定 if prev_frame is not None: # 计算帧间差分 diff = cv2.absdiff(frame, prev_frame) # 计算运动向量 _, motion = cv2.optflow.calcOpticalFlowFarneback(prev_frame, frame, None, 0.5, 3, 15, 3, 5, 1.2, 0) # 平移每一帧 M = np.float32([[1, 0, motion[:,:,0].mean()], [0, 1, motion[:,:,1].mean()]]) frame = cv2.warpAffine(frame, M, (frame.shape[1], frame.shape[0])) diff = cv2.warpAffine(diff, M, (diff.shape[1], diff.shape[0])) # 显示帧间差分 cv2.imshow('diff', diff) # 更新上一帧 prev_frame = frame.copy() cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放对象 cap.release() fg_out.release() cv2.destroyAllWindows()改为4.5.3版本的opencv能用的程序

请说一下import cv2 cap = cv2.VideoCapture('2.mp4') bgsubmog = cv2.bgsegm.createBackgroundSubtractorMOG() # 保存车辆中心点信息 cars = [] # 统计车的数量 car_n = 0 # 形态学kernel kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) while True:     ret, frame = cap.read()         if(ret == True):         # 灰度处理         cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)         # 高斯去噪         blur = cv2.GaussianBlur(frame, (3, 3), 5)         mask = bgsubmog.apply(blur)         # 腐蚀         erode = cv2.erode(mask, kernel)         # 膨胀         dilate = cv2.dilate(erode, kernel, 3)         # 闭操作         close = cv2.morphologyEx(dilate, cv2.MORPH_CLOSE, kernel)         close = cv2.morphologyEx(close, cv2.MORPH_CLOSE, kernel)                 contours, h = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,)                 # 画一条线         cv2.line(frame, (0, 450), (1300, 450), (0, 255, 255), 3)         for (i, c) in enumerate(contours):             (x, y, w, h) = cv2.boundingRect(c)                         # 过滤小的检测框             isshow = (w >= 55) and (h >= 55)             if(not isshow):                 continue                             # 保存中心点信息             cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255), 2)             centre_p = (x + int(w/2), y + int(h/2))             cars.append(centre_p)             cv2.circle(frame, (centre_p), 5, (0,0,255), -1)             for (x, y) in cars:                 if(593 < y < 607):                     car_n += 1                     cars.remove((x, y))                     cv2.putText(frame, "Cars Count:" + str(car_n), (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 5)             cv2.imshow('2', frame)                 key = cv2.waitKey(1)     if(key == 27):                  # Esc退出         break cap.release() cv2.destroyAllWindows()每一段代码的意思

最新推荐

recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph