batch_size = 32 valid_ratio = 0.1 devices = [torch.device('cuda:0')] num_epochs = 20 lr = 2e-4 wd = 5e-4 lr_period = 4 lr_decay = 0.9 net = get_net() train(net, train_iter, val_iter, num_epochs, lr, wd, devices, lr_period, lr_decay) 优化超参数

时间: 2024-04-24 16:22:38 浏览: 150
优化超参数可以帮助您提高模型的性能和精度。以下是一些建议: 1.批次大小(batch_size):批次大小是指在一个训练周期中一次传递给模型的数据量。通常情况下,较大的批次大小可以提高训练速度,但可能会导致过拟合。您可以尝试不同的批次大小,以找到最佳批次大小。 2.学习率(lr):学习率是指在训练过程中更新模型权重的速度。较高的学习率可以加快模型的训练速度,但可能会导致模型不稳定。较低的学习率可以使模型更稳定,但可能需要更长的训练时间。您可以尝试不同的学习率,以找到最佳学习率。 3.权重衰减(wd):权重衰减是指在训练过程中对权重进行惩罚以避免过拟合。较高的权重衰减可以减少过拟合,但可能会影响模型的性能。您可以尝试不同的权重衰减系数,以找到最佳系数。 4.学习率调整周期(lr_period)和学习率衰减(lr_decay):学习率调整周期是指在训练过程中降低学习率的周期数。学习率衰减是指在每个学习率调整周期中降低学习率的幅度。您可以尝试不同的学习率调整周期和学习率衰减系数,以找到最佳参数。 5.验证数据比例(valid_ratio):验证数据比例是指从训练数据集中分离出用于验证模型的数据比例。您可以尝试不同的验证数据比例,以找到最佳比例。 希望这些建议可以帮助您优化超参数,提高模型的性能和精度。
相关问题

解释代码:def train_ae(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') Image_path = "data\\figures_simplify\\" visualize = False epochs = 1000 lr0 = 1e-3 train_ratio = 0.8 batch_size = 16 features_num = 700 model = AE(features_num=features_num).to(device) image_set = ImageDataset(Image_path) train_size = int(len(image_set) * train_ratio) test_size = int(len(image_set)) - train_size train_dataset, test_dataset = torch.utils.data.random_split(image_set, [train_size, test_size]) train = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=lr0)

这段代码是一个训练自编码器(Autoencoder)的函数。让我来解释一下代码的每个部分: 1. `device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')`: 这一行代码用于检测是否有可用的GPU,如果有则将设备设置为cuda,否则设置为cpu。 2. `Image_path = "data\\figures_simplify\\"`: 这里定义了存储图像数据的路径。 3. `visualize = False`: 这个变量用于控制是否在训练过程中可视化结果。 4. `epochs = 1000`: 这个变量定义了训练的轮数。 5. `lr0 = 1e-3`: 这个变量定义了初始学习率。 6. `train_ratio = 0.8`: 这个变量定义了训练集所占的比例,测试集所占比例为 (1 - train_ratio)。 7. `batch_size = 16`: 这个变量定义了每个小批量的样本数量。 8. `features_num = 700`: 这个变量定义了自编码器的输入特征数量。 9. `model = AE(features_num=features_num).to(device)`: 这里创建了一个自编码器模型,并将其移动到指定的设备上。 10. `image_set = ImageDataset(Image_path)`: 这里创建了一个自定义的数据集对象,用于加载图像数据。 11. `train_size = int(len(image_set) * train_ratio)`: 这里计算了训练集的大小。 12. `test_size = int(len(image_set)) - train_size`: 这里计算了测试集的大小。 13. `train_dataset, test_dataset = torch.utils.data.random_split(image_set, [train_size, test_size])`: 这里将数据集随机分割为训练集和测试集。 14. `train = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)`: 这里创建了一个训练数据加载器,用于批量加载训练数据。 15. `test = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)`: 这里创建了一个测试数据加载器,用于批量加载测试数据。 16. `criterion = nn.MSELoss()`: 这里定义了损失函数,使用均方误差(MSE)作为损失函数。 17. `optimizer = optim.Adam(model.parameters(), lr=lr0)`: 这里定义了优化器,使用Adam优化算法,并传入模型参数和学习率。 以上就是这段代码的解释,它主要是用于训练一个自编码器模型。

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

好的,以下是使用LDAM损失函数训练模型的Pytorch代码: ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torchvision import datasets, transforms from ldam_loss import LDAMLoss # 定义模型 class MyModel(nn.Module): def __init__(self, num_classes): super(MyModel, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.classifier = nn.Sequential( nn.Linear(128 * 4 * 4, 256), nn.ReLU(inplace=True), nn.Linear(256, num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 设置超参数 model_lr = 1e-4 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 use_ema = True model_ema_decay = 0.9998 start_epoch = 1 seed = 1 # 设置随机种子 def seed_everything(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) seed_everything(seed) # 定义数据增强 transform = transforms.Compose([ transforms.Resize(224), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_test = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) # 定义模型及优化器 model = MyModel(num_classes=classes).to(DEVICE) optimizer = torch.optim.Adam(model.parameters(), lr=model_lr) # 使用LDAM损失函数 cls_num_list = [dataset_train.targets.count(i) for i in range(classes)] criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, weight=None, s=30) # 训练模型 for epoch in range(start_epoch, EPOCHS+1): model.train() for i, (data, target) in enumerate(train_loader): data, target = data.to(DEVICE), target.to(DEVICE) mixup_data, mixup_target = mixup_fn(data, target) # 数据增强 optimizer.zero_grad() output = model(mixup_data) loss = criterion(output, mixup_target) if use_dp: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) else: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), CLIP_GRAD) optimizer.step() if use_ema: ema_model = ModelEMA(model, decay=model_ema_decay) ema_model.update(model) else: ema_model = None test_acc = test(model, test_loader, DEVICE) if test_acc > Best_ACC: Best_ACC = test_acc save_checkpoint({ 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'Best_ACC': Best_ACC, }, is_best=True) ```
阅读全文

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

pytorch部分代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True) cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) criterion_val = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) targets = torch.tensor(targets).to(torch.long) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() # 否则,直接反向传播求梯度 else: loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step() 报错:RuntimeError: Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1

train_set = TrainDatasetFromFolder('/root/autodl-tmp/srpad_project/data/HR', NAME, crop_size=CROP_SIZE, upscale_factor=UPSCALE_FACTOR) val_set = ValDatasetFromFolder('/root/autodl-tmp/srpad_project/data/HR', NAME, crop_size=CROP_SIZE, upscale_factor=UPSCALE_FACTOR)#47-50加载训练集和验证集的图像 train_loader = DataLoader(dataset=train_set, num_workers=4, batch_size=16, shuffle=True) val_loader = DataLoader(dataset=val_set, num_workers=4, batch_size=1, shuffle=False) net = Net().cuda()#初始化网络 criterion = torch.nn.MSELoss().cuda()#设置损失函数 optimizer = torch.optim.Adam([paras for paras in net.parameters() if paras.requires_grad == True], lr=0.001)#设置优化器 t = 5 T = NUM_EPOCHS n_t = 0.5 lambda1 = lambda epoch: (0.9 * epoch / t + 0.1) if epoch < t else 0.1 if n_t * ( 1 + math.cos(math.pi * (epoch - t) / (T - t))) < 0.1 else n_t * ( 1 + math.cos(math.pi * (epoch - t) / (T - t))) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)#56-64损失函数学习率的一个变化策略。这里面我们学习选择了先上升后下降的一个学习力策略 results = {'loss': [], 'psnr': [], 'ssim': [], 'bic_psnr': [], 'bic_ssim': [], 'val_loss': []} for epoch in range(1, NUM_EPOCHS + 1):#迭代开始 train_bar = tqdm(train_loader) running_results = {'batch_sizes': 0, 'loss': 0} net.train()#加载网络,进入for循环 for data, target in train_bar: batch_size = data.size(0) running_results['batch_sizes'] += batch_size inputs = Variable(data).cuda()#加载variable形式,把它放在cuda(GPU)上 gt = Variable(target).cuda() output = net(inputs)#网络输出

try: import thop except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): torch.manual_seed(seed) if seed == 0: cudnn.benchmark, cudnn.deterministic = False, True else: cudnn.benchmark, cudnn.deterministic = True, False def select_device(device='', batch_size=None): s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" s += 'CPU\n' logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): if torch.cuda.is_available(): torch.cuda.synchronize() return time.time()

dataset = CocoDetection(root=r'D:\file\study\data\COCO2017\train2017', annFile=r'D:\file\study\data\COCO2017\annotations\instances_train2017.json', transforms=transforms.Compose([transforms.ToTensor()])) # 定义训练集和测试集的比例 train_ratio = 0.8 test_ratio = 0.2 # 计算训练集和测试集的数据数量 num_data = len(dataset) num_train_data = int(num_data * train_ratio) num_test_data = num_data - num_train_data # 使用random_split函数将数据集划分为训练集和测试集 train_dataset, test_dataset = random_split(dataset, [num_train_data, num_test_data]) # 打印训练集和测试集的数据数量 print(f"Number of training data: {len(train_dataset)}") print(f"Number of test data: {len(test_dataset)}") train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0) test_loader = DataLoader(test_dataset, batch_size=8, shuffle=True, num_workers=0) # define the optimizer and the learning rate scheduler params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) # train the model for 10 epochs num_epochs = 10 for epoch in range(num_epochs): # 将模型设置为训练模式 model.train() # 初始化训练损失的累计值 train_loss = 0.0 # 构建一个迭代器,用于遍历数据集 for i, images, targets in train_loader: print(images) print(targets) # 将数据转移到设备上 images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets]上述代码报错:TypeError: call() takes 2 positional arguments but 3 were given

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C
recommend-type

Deno Express:模仿Node.js Express的Deno Web服务器解决方案

资源摘要信息:"deno-express:该项目的灵感来自https" 知识点: 1. Deno 介绍:Deno 是一个简单、现代且安全的JavaScript和TypeScript运行时,由Node.js的原作者Ryan Dahl开发。它内置了诸如TypeScript支持、依赖模块的自动加载等功能。Deno的出现是为了解决Node.js存在的一些问题,比如全局状态污染和包管理等。 2. Express.js 概念:Express.js 是一个基于Node.js平台的极简、灵活的web应用开发框架。它提供了一系列强大的功能,用于开发单页、多页和混合web应用。Express.js的亮点在于其路由系统,对中间件的使用,以及对视图引擎的支持。 3. deno-express 项目:该项目以Node.js的Express框架为灵感,为Deno提供了一套类似于Express的Web服务器搭建方式。使用deno-express可以让开发者用熟悉的Express API在Deno环境中快速构建Web应用。 4. TypeScript 使用:TypeScript 是 JavaScript 的一个超集,添加了类型系统和对ES6+的新特性的支持。它最终会被编译成纯JavaScript代码,以便在浏览器和Node.js等JavaScript环境中运行。在deno-express项目中,通过TypeScript编写代码,不仅可以享受到静态类型检查的好处,还可以利用TypeScript的强类型系统来构建更稳定、易于维护的代码。 5. 代码示例解析:在描述中提供了一个简短的代码示例,示范了如何使用deno-express构建一个简单的web server。 - `import * as expressive from "https://raw.githubusercontent.com/NMathar/deno-express/master/mod.ts";` 这行代码通过网络导入了deno-express库的核心模块。 - `const port = 3000;` 定义了一个端口号,即web服务器将监听的端口。 - `const app = new expressive.App();` 创建了一个Express-like的App实例。 - `app.use(expressive.simpleLog());` 使用了一个简单的日志中间件,这可能会记录请求和响应的信息。 - `app.use(expressive.static_("./public"));` 使用了静态文件服务中间件,指定 "./public" 作为静态文件目录,使得该目录下的文件可以被Web服务访问。 - `app.use(expressive.bodyParser.json());` 使用了body-parser中间件,它能解析请求体中的JSON格式数据,使得在后续的请求处理中可以方便地获取这些数据。 6. Deno 与 Node.js 的对比:Deno与Node.js在设计哲学和实现上有明显差异。Deno不使用npm作为包管理器,而是通过URL导入模块。它也具备内置的TLS和网络测试工具,以及自动的依赖项管理,这都是Node.js需要外部模块来实现的功能。 7. 代码示例中的未显示部分:描述中仅展示了server.ts文件的部分内容,根据标准的Express应用结构,可能还会包括定义路由、设置视图引擎、错误处理中间件等。 8. 模块和库的使用:在deno-express项目中,开发者会接触到如何在Deno环境下使用外部模块。在JavaScript和TypeScript社区中,通过URL直接导入模块是一个新颖的方法,它使得依赖关系变得清晰,并且有助于构建安全、无包管理器污染的应用。 9. 对于TypeScript的依赖:由于deno-express项目的代码示例是用TypeScript编写的,所以它展示了TypeScript在Deno项目中如何使用。Deno对TypeScript的支持是原生的,无需额外编译器,直接运行即可。 10. Web服务器搭建实践:通过这个项目,开发者可以学习如何在Deno中搭建和管理Web服务器,包括如何处理路由、如何对请求和响应进行中间件处理等Web开发基础知识点。 通过对以上知识点的了解,可以对deno-express项目有一个全面的认识。该项目不仅为Deno提供了类似Express.js的Web开发体验,还展示了如何利用TypeScript来构建现代化、高性能的Web应用。