batch_size = 32 valid_ratio = 0.1 devices = [torch.device('cuda:0')] num_epochs = 20 lr = 2e-4 wd = 5e-4 lr_period = 4 lr_decay = 0.9 net = get_net() train(net, train_iter, val_iter, num_epochs, lr, wd, devices, lr_period, lr_decay) 优化超参数
时间: 2024-04-24 16:22:38 浏览: 150
优化超参数可以帮助您提高模型的性能和精度。以下是一些建议:
1.批次大小(batch_size):批次大小是指在一个训练周期中一次传递给模型的数据量。通常情况下,较大的批次大小可以提高训练速度,但可能会导致过拟合。您可以尝试不同的批次大小,以找到最佳批次大小。
2.学习率(lr):学习率是指在训练过程中更新模型权重的速度。较高的学习率可以加快模型的训练速度,但可能会导致模型不稳定。较低的学习率可以使模型更稳定,但可能需要更长的训练时间。您可以尝试不同的学习率,以找到最佳学习率。
3.权重衰减(wd):权重衰减是指在训练过程中对权重进行惩罚以避免过拟合。较高的权重衰减可以减少过拟合,但可能会影响模型的性能。您可以尝试不同的权重衰减系数,以找到最佳系数。
4.学习率调整周期(lr_period)和学习率衰减(lr_decay):学习率调整周期是指在训练过程中降低学习率的周期数。学习率衰减是指在每个学习率调整周期中降低学习率的幅度。您可以尝试不同的学习率调整周期和学习率衰减系数,以找到最佳参数。
5.验证数据比例(valid_ratio):验证数据比例是指从训练数据集中分离出用于验证模型的数据比例。您可以尝试不同的验证数据比例,以找到最佳比例。
希望这些建议可以帮助您优化超参数,提高模型的性能和精度。
相关问题
解释代码:def train_ae(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') Image_path = "data\\figures_simplify\\" visualize = False epochs = 1000 lr0 = 1e-3 train_ratio = 0.8 batch_size = 16 features_num = 700 model = AE(features_num=features_num).to(device) image_set = ImageDataset(Image_path) train_size = int(len(image_set) * train_ratio) test_size = int(len(image_set)) - train_size train_dataset, test_dataset = torch.utils.data.random_split(image_set, [train_size, test_size]) train = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=lr0)
这段代码是一个训练自编码器(Autoencoder)的函数。让我来解释一下代码的每个部分:
1. `device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')`: 这一行代码用于检测是否有可用的GPU,如果有则将设备设置为cuda,否则设置为cpu。
2. `Image_path = "data\\figures_simplify\\"`: 这里定义了存储图像数据的路径。
3. `visualize = False`: 这个变量用于控制是否在训练过程中可视化结果。
4. `epochs = 1000`: 这个变量定义了训练的轮数。
5. `lr0 = 1e-3`: 这个变量定义了初始学习率。
6. `train_ratio = 0.8`: 这个变量定义了训练集所占的比例,测试集所占比例为 (1 - train_ratio)。
7. `batch_size = 16`: 这个变量定义了每个小批量的样本数量。
8. `features_num = 700`: 这个变量定义了自编码器的输入特征数量。
9. `model = AE(features_num=features_num).to(device)`: 这里创建了一个自编码器模型,并将其移动到指定的设备上。
10. `image_set = ImageDataset(Image_path)`: 这里创建了一个自定义的数据集对象,用于加载图像数据。
11. `train_size = int(len(image_set) * train_ratio)`: 这里计算了训练集的大小。
12. `test_size = int(len(image_set)) - train_size`: 这里计算了测试集的大小。
13. `train_dataset, test_dataset = torch.utils.data.random_split(image_set, [train_size, test_size])`: 这里将数据集随机分割为训练集和测试集。
14. `train = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)`: 这里创建了一个训练数据加载器,用于批量加载训练数据。
15. `test = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)`: 这里创建了一个测试数据加载器,用于批量加载测试数据。
16. `criterion = nn.MSELoss()`: 这里定义了损失函数,使用均方误差(MSE)作为损失函数。
17. `optimizer = optim.Adam(model.parameters(), lr=lr0)`: 这里定义了优化器,使用Adam优化算法,并传入模型参数和学习率。
以上就是这段代码的解释,它主要是用于训练一个自编码器模型。
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数训练模型的Pytorch代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss
# 定义模型
class MyModel(nn.Module):
def __init__(self, num_classes):
super(MyModel, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 设置超参数
model_lr = 1e-4
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
seed_everything(seed)
# 定义数据增强
transform = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 定义数据集
dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform)
dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 定义模型及优化器
model = MyModel(num_classes=classes).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=model_lr)
# 使用LDAM损失函数
cls_num_list = [dataset_train.targets.count(i) for i in range(classes)]
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, weight=None, s=30)
# 训练模型
for epoch in range(start_epoch, EPOCHS+1):
model.train()
for i, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
mixup_data, mixup_target = mixup_fn(data, target) # 数据增强
optimizer.zero_grad()
output = model(mixup_data)
loss = criterion(output, mixup_target)
if use_dp:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
else:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), CLIP_GRAD)
optimizer.step()
if use_ema:
ema_model = ModelEMA(model, decay=model_ema_decay)
ema_model.update(model)
else:
ema_model = None
test_acc = test(model, test_loader, DEVICE)
if test_acc > Best_ACC:
Best_ACC = test_acc
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'Best_ACC': Best_ACC,
}, is_best=True)
```
阅读全文