BERT实体关系联合抽取Python代码
时间: 2023-11-05 10:08:53 浏览: 92
基于GlobalPointer的实体关系事件抽取.zip
5星 · 资源好评率100%
以下是使用PyTorch实现BERT实体关系联合抽取的Python代码示例:
```python
import torch
from transformers import BertTokenizer, BertModel
# 加载预训练的BERT模型和tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
# 定义实体关系分类层
class EntityRelationClassifier(torch.nn.Module):
def __init__(self, num_labels):
super(EntityRelationClassifier, self).__init__()
self.bert = model
self.dropout = torch.nn.Dropout(0.1)
self.classifier = torch.nn.Linear(768, num_labels)
def forward(self, input_ids, attention_mask, token_type_ids):
outputs = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# 训练和评估函数
def train_and_evaluate():
# 加载数据集
train_dataset = ...
valid_dataset = ...
test_dataset = ...
# 定义模型和优化器
model = EntityRelationClassifier(num_labels=...)
optimizer = torch.optim.AdamW(model.parameters(), lr=...)
# 训练循环
for epoch in range(num_epochs):
model.train()
for batch in train_dataset:
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
token_type_ids = batch['token_type_ids']
labels = batch['labels']
logits = model(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
loss = torch.nn.CrossEntropyLoss()(logits, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# 评估循环
model.eval()
with torch.no_grad():
for batch in valid_dataset:
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
token_type_ids = batch['token_type_ids']
labels = batch['labels']
logits = model(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
loss = torch.nn.CrossEntropyLoss()(logits, labels)
# 计算评估指标
...
# 测试循环
model.eval()
with torch.no_grad():
for batch in test_dataset:
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
token_type_ids = batch['token_type_ids']
labels = batch['labels']
logits = model(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
# 计算测试指标
...
```
在代码中,我们首先加载了预训练的BERT模型和tokenizer。接着,我们定义了一个实体关系分类层,并在训练和评估函数中使用该层。在训练循环中,我们计算了每个批次的损失,并使用反向传播更新了模型的参数。在评估循环中,我们计算了每个批次的损失和评估指标,如准确率、精确率、召回率和F1分数。在测试循环中,我们计算了每个批次的测试指标。
阅读全文