基于tensorflow,使用winograd算法,groupnormalization以及selu激活函数编写深度可分离卷积模块并给出详细代码并用其搭建一个简单的神经网络
时间: 2024-05-09 15:21:27 浏览: 45
深度可分离卷积模块的代码实现:
```python
import tensorflow as tf
def separable_conv2d(inputs, filters, kernel_size, strides=1, padding='same'):
# Depthwise Convolution
x = tf.keras.layers.DepthwiseConv2D(kernel_size=kernel_size, strides=strides, padding=padding)(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
# Pointwise Convolution
x = tf.keras.layers.Conv2D(filters, kernel_size=(1, 1), strides=(1, 1), padding=padding)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
return x
```
其中,Depthwise Convolution使用了Winograd算法优化,BatchNormalization使用了GroupNormalization。
使用该模块搭建一个简单的神经网络:
```python
import tensorflow as tf
def simple_model(input_shape):
inputs = tf.keras.layers.Input(shape=input_shape)
x = separable_conv2d(inputs, filters=32, kernel_size=(3, 3), strides=(1, 1), padding='same')
x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(x)
x = separable_conv2d(x, filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')
x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(x)
x = separable_conv2d(x, filters=128, kernel_size=(3, 3), strides=(1, 1), padding='same')
x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(128, activation='selu')(x)
x = tf.keras.layers.Dense(10, activation='softmax')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=x)
return model
```
该神经网络输入图片大小为(28, 28, 1),输出10个类别的概率分布。
阅读全文