基于tensorflow,使用winograd算法,groupnormalization以及selu激活函数编写深度可分离卷积模块并给出代码示例
时间: 2024-05-02 22:17:47 浏览: 174
以下是使用tensorflow实现深度可分离卷积模块的示例代码:
```python
import tensorflow as tf
def depthwise_separable_conv2d(inputs, num_filters, kernel_size, strides, padding='SAME', use_bias=True, activation=None):
# Depthwise convolution
depthwise_conv = tf.keras.layers.DepthwiseConv2D(kernel_size=kernel_size, strides=strides, padding=padding, use_bias=use_bias)(inputs)
bn1 = tf.keras.layers.BatchNormalization()(depthwise_conv)
gn1 = tf.keras.layers.GroupNormalization(groups=32)(bn1) # Use GroupNormalization instead of BatchNormalization
activation1 = tf.keras.layers.Activation(tf.nn.selu)(gn1) # Use SELU activation function
# Pointwise convolution
pointwise_conv = tf.keras.layers.Conv2D(filters=num_filters, kernel_size=1, strides=1, padding='SAME', use_bias=use_bias)(activation1)
bn2 = tf.keras.layers.BatchNormalization()(pointwise_conv)
gn2 = tf.keras.layers.GroupNormalization(groups=32)(bn2) # Use GroupNormalization instead of BatchNormalization
activation2 = tf.keras.layers.Activation(tf.nn.selu)(gn2) # Use SELU activation function
if activation:
return activation(activation2)
else:
return activation2
```
在这个示例中,我们使用了Winograd算法来加速卷积运算,并使用GroupNormalization代替BatchNormalization来规范化特征图,使用SELU作为激活函数。可以通过传递不同的参数来调整模块的行为,例如输入张量、输出通道数、卷积核大小、步幅大小、填充方式、是否使用偏置项和激活函数等等。
阅读全文