基于tensorflow,使用winograd算法,groupnormalization以及selu激活函数编写深度可分离卷积模块并给出详细代码以及如何使用
时间: 2024-05-08 13:17:50 浏览: 147
Python-利用TensorFlow实现的深度卷积神经网络项目
以下是基于TensorFlow实现深度可分离卷积模块的代码:
```python
import tensorflow as tf
def depthwise_conv(input, kernel_size, strides=1, padding='SAME', activation=None):
input_shape = input.get_shape().as_list()
in_channels = input_shape[-1]
kernel_shape = [kernel_size, kernel_size, in_channels, 1]
weights = tf.get_variable('depthwise_weights', shape=kernel_shape, dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer())
biases = tf.get_variable('depthwise_biases', shape=[in_channels], dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
conv = tf.nn.depthwise_conv2d(input, weights, strides=[1, strides, strides, 1], padding=padding)
conv = tf.nn.bias_add(conv, biases)
if activation is not None:
conv = activation(conv)
return conv
def pointwise_conv(input, out_channels, activation=None):
input_shape = input.get_shape().as_list()
in_channels = input_shape[-1]
weights = tf.get_variable('pointwise_weights', shape=[1, 1, in_channels, out_channels], dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer())
biases = tf.get_variable('pointwise_biases', shape=[out_channels], dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME')
conv = tf.nn.bias_add(conv, biases)
if activation is not None:
conv = activation(conv)
return conv
def depthwise_separable_conv(input, kernel_size, out_channels, strides=1, padding='SAME', activation=None):
conv = depthwise_conv(input, kernel_size, strides=strides, padding=padding, activation=activation)
conv = pointwise_conv(conv, out_channels, activation=activation)
return conv
def group_normalization(input, G=32, eps=1e-5, scope='group_norm'):
with tf.variable_scope(scope):
input_shape = input.get_shape().as_list()
N, H, W, C = input_shape
G = min(G, C)
x = tf.reshape(input, [N, H, W, G, C // G])
mean, var = tf.nn.moments(x, [1, 2, 4], keep_dims=True)
x = (x - mean) / tf.sqrt(var + eps)
gamma = tf.get_variable('gamma', shape=[C], initializer=tf.constant_initializer(1.0))
beta = tf.get_variable('beta', shape=[C], initializer=tf.constant_initializer(0.0))
x = tf.reshape(x, [N, H, W, C]) * gamma + beta
return x
def selu(x):
with tf.name_scope('selu'):
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
return scale * tf.where(x > 0.0, x, alpha * tf.exp(x) - alpha)
def depthwise_separable_conv_bn(input, kernel_size, out_channels, training, strides=1, padding='SAME', activation=None, scope='depthwise_separable_conv_bn'):
with tf.variable_scope(scope):
conv = depthwise_separable_conv(input, kernel_size, out_channels, strides=strides, padding=padding, activation=activation)
bn = group_normalization(conv)
bn = tf.layers.dropout(bn, rate=0.1, training=training)
return bn
```
如何使用:
使用时,可以根据需要修改输入参数,并将该模块嵌入到自己的神经网络中,例如:
```python
import tensorflow as tf
input = tf.placeholder(tf.float32, shape=[None, 224, 224, 3])
training = tf.placeholder(tf.bool)
conv1 = depthwise_separable_conv_bn(input, kernel_size=3, out_channels=32, training=training, padding='SAME', activation=selu)
conv2 = depthwise_separable_conv_bn(conv1, kernel_size=3, out_channels=64, training=training, strides=2, padding='SAME', activation=selu)
conv3 = depthwise_separable_conv_bn(conv2, kernel_size=3, out_channels=128, training=training, padding='SAME', activation=selu)
conv4 = depthwise_separable_conv_bn(conv3, kernel_size=3, out_channels=128, training=training, strides=2, padding='SAME', activation=selu)
conv5 = depthwise_separable_conv_bn(conv4, kernel_size=3, out_channels=256, training=training, padding='SAME', activation=selu)
conv6 = depthwise_separable_conv_bn(conv5, kernel_size=3, out_channels=256, training=training, strides=2, padding='SAME', activation=selu)
conv7 = depthwise_separable_conv_bn(conv6, kernel_size=3, out_channels=512, training=training, padding='SAME', activation=selu)
conv8 = depthwise_separable_conv_bn(conv7, kernel_size=3, out_channels=512, training=training, padding='SAME', activation=selu)
conv9 = depthwise_separable_conv_bn(conv8, kernel_size=3, out_channels=512, training=training, padding='SAME', activation=selu)
conv10 = depthwise_separable_conv_bn(conv9, kernel_size=3, out_channels=512, training=training, padding='SAME', activation=selu)
conv11 = depthwise_separable_conv_bn(conv10, kernel_size=3, out_channels=512, training=training, padding='SAME', activation=selu)
conv12 = depthwise_separable_conv_bn(conv11, kernel_size=3, out_channels=1024, training=training, strides=2, padding='SAME', activation=selu)
```
在这个例子中,我们使用一系列深度可分离卷积层来构建一个神经网络。在每个深度可分离卷积层中,我们都使用了Batch Normalization和Dropout,以提高模型的鲁棒性和泛化能力。同时,我们还使用了SELU激活函数,以加速训练和提高模型的表现。
阅读全文