Pytorch怎么调用.plt模型
时间: 2023-09-05 11:09:12 浏览: 91
首先,你需要先加载已经保存的模型。假设你的模型是保存在.pth文件中的,可以使用以下代码进行加载:
```python
import torch
# 加载模型
model = torch.load('model.pth')
```
接着,你可以使用该模型进行预测,例如,对一张图片进行预测:
```python
import matplotlib.pyplot as plt
# 加载图片
img = plt.imread('test.jpg')
# 转换为张量
img_tensor = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float()
# 进行预测
output = model(img_tensor)
# 处理预测结果
# ...
```
最后,根据预测结果进行相应的处理。需要注意的是,plt模型可能是基于PyTorch的,但它并不是PyTorch的一部分,因此具体的使用方法可能会有所不同。
相关问题
怎么在spyder中调用.plt模型进行模型测试
同样需要先加载已经保存的模型。假设你的模型是保存在.pth文件中的,可以使用以下代码进行加载:
```python
import torch
# 加载模型
model = torch.load('model.pth')
```
接着,可以使用该模型进行预测,例如,对一张图片进行预测:
```python
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
# 加载图片
img = Image.open('test.jpg')
# 转换为张量
img_tensor = np.array(img)
img_tensor = torch.from_numpy(img_tensor).permute(2, 0, 1).unsqueeze(0).float()
# 进行预测
output = model(img_tensor)
# 处理预测结果
# ...
# 显示预测结果
plt.imshow(output)
plt.show()
```
需要注意的是,plt模型可能是基于PyTorch的,但它并不是PyTorch的一部分,因此具体的使用方法可能会有所不同。此外,你需要根据模型的要求调整图片的大小和格式。
使用pytorch训练图像识别模型的代码
以下是一个基本的使用 PyTorch 训练图像分类模型的代码示例:
首先,导入必要的库和模块:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
```
接下来,定义数据增强和数据加载器:
``` python
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = '/path/to/dataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```
然后,定义模型:
``` python
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
```
接下来,定义训练函数和验证函数:
``` python
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
```
最后,调用训练函数和可视化函数进行训练和可视化:
``` python
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
visualize_model(model_ft)
plt.show()
```
阅读全文