python如何重新训练别人训练好的word2Vec预模型
时间: 2023-07-10 15:09:33 浏览: 221
要重新训练别人训练好的Word2Vec预模型,你需要使用Gensim库。具体步骤如下:
1. 导入Gensim库和预训练好的模型文件。
```python
from gensim.models import Word2Vec
model = Word2Vec.load('pretrained_model.bin')
```
2. 加载新的语料库,并将其与预训练模型合并。
```python
new_data = [['this', 'is', 'an', 'example', 'sentence'], ['another', 'example', 'sentence']]
model.build_vocab(new_data, update=True)
```
3. 重新训练模型。
```python
model.train(new_data, total_examples=model.corpus_count, epochs=model.epochs)
```
4. 保存新模型。
```python
model.save('new_model.bin')
```
这样就可以重新训练别人训练好的Word2Vec预模型了。
相关问题
python如何向已经训练好的word2vec预模型中加入一个随机初始化的新词语
要向已经训练好的word2vec预模型中加入一个随机初始化的新词语,可以按照以下步骤操作:
1. 导入gensim库中的Word2Vec模型。
```
from gensim.models import Word2Vec
```
2. 加载已经训练好的Word2Vec模型。
```
model = Word2Vec.load('path/to/word2vec_model')
```
3. 添加新词语到词汇表中,并且随机初始化它们的向量。
```
new_words = ['new_word_1', 'new_word_2', ...]
model.build_vocab(new_words, update=True)
model.train(new_words, total_examples=model.corpus_count, epochs=model.epochs)
```
在上述代码中,我们首先将新词语添加到词汇表中,然后使用train()函数对新词语进行训练,total_examples参数指定训练样本的总数,epochs参数指定训练迭代的次数。
4. 保存更新后的模型。
```
model.save('path/to/updated_model')
```
通过以上步骤,我们就可以向已经训练好的Word2Vec模型中加入新的随机初始化的词语,并且保存更新后的模型。
word2vec预训练模型 CBOW
### Word2Vec Pre-Trained Models: Continuous Bag of Words (CBOW)
In the realm of natural language processing, the Continuous Bag of Words (CBOW) model is one approach used within Word2Vec algorithms to generate word embeddings. The CBOW model aims at predicting a target word based on its surrounding context words. This method contrasts with the Skip-gram model which predicts context words from a single input word[^1].
For instance, consider the sentence "Pack my box with five dozen liquor jugs". If using a CBOW model with a context window size of two, the algorithm will attempt to predict each central word by considering the preceding and succeeding words around it. Specifically, for the word 'dozen', the model uses ['five', 'liquor'] as inputs to predict this center word.
#### Implementation Example
Below demonstrates how to implement and use a pre-trained CBOW model through Python's gensim library:
```python
from gensim.models import KeyedVectors
# Load Google News pretrained vectors or any other source providing cbow trained models.
path_to_model = '/path/to/GoogleNews-vectors-negative300.bin'
model = KeyedVectors.load_word2vec_format(path_to_model, binary=True)
# Querying similarity between words
print(model.similarity('woman', 'man'))
# Finding most similar words to a given term
similar_words = model.most_similar('king')
for word in similar_words:
print(word)
```
This code snippet illustrates loading a pre-trained Word2Vec model that was likely trained using either CBOW or skip-gram architecture depending upon what has been specified during training phase. Once loaded, operations such as finding similarities among terms become straightforward tasks facilitated by these powerful tools provided by libraries like Gensim.
阅读全文
相关推荐
















