解释n = size(x, 2); dbn.sizes = [n, dbn.sizes];
时间: 2023-05-29 14:05:57 浏览: 161
这行代码的含义是:将变量x的第二个维度的大小赋值给变量n,然后将n作为新数组dbn.sizes的第一个元素,将dbn.sizes原有的元素依次向后移动一位,并将n作为新数组dbn.sizes的第一个元素。该行代码的实现过程与以下代码等价:
```
n = size(x, 2);
temp = zeros(1, length(dbn.sizes) + 1);
temp(1) = n;
temp(2:end) = dbn.sizes;
dbn.sizes = temp;
```
其中,zeros()函数用于创建一个零矩阵,length()函数用于获取数组的长度,temp(2:end)表示取temp数组从第二个元素到最后一个元素的切片。
相关问题
解释dbnParams.numLayers = 5; num_class = 4; dbn.hidden_sizes = 3; dbn.sizes = 60,70,80;
这段代码是在设置一个深度置信网络(DBN)的参数。其中:
- dbnParams.numLayers = 5; 表示这个DBN有5层,包括一个可见层和4个隐层。
- num_class = 4; 表示这个问题是一个4分类问题,即需要将输入数据分成4类。
- dbn.hidden_sizes = 3; 表示隐层的神经元个数为3个。
- dbn.sizes = 60,70,80; 表示从第一个隐层开始,每个隐层的神经元个数分别为60、70、80个。
因此,这段代码设置了一个包含5层的深度置信网络,其中第一个隐层有60个神经元,第二个隐层有70个神经元,第三个隐层有80个神经元,每个隐层的神经元个数都为3个,用于解决一个4分类问题。
解释dbnParams.numLayers = 3; dbnParams.hiddenSizes = [100, 200, 300]; dbnParams.inputZeroMaskedFraction = 0.5; dbn.sizes = 100,150,180; opts.numepochs = 10; opts.batchsize = 1; opts.momentum = 0.5;opts.alpha = 0.0; opts.plot = 1; dbn = dbnsetup(dbn, trainXn, opts); dbn = dbntrain(dbn, trainXn, opts);
这段代码是在使用深度置信网络(DBN)进行训练时设置参数的过程。其中:
- dbnParams.numLayers = 3; 表示DBN网络的层数为3层。
- dbnParams.hiddenSizes = [100, 200, 300]; 表示每一层的隐藏层节点数分别为100、200、300。
- dbnParams.inputZeroMaskedFraction = 0.5; 表示训练数据中有一半的输入数据会被置为0,以增加模型的鲁棒性。
- dbn.sizes = 100,150,180; 表示DBN网络每一层的节点数为100、150、180。
- opts.numepochs = 10; 表示训练次数为10次。
- opts.batchsize = 1; 表示每一批次训练数据的大小为1。
- opts.momentum = 0.5; 表示动量参数为0.5,用于加速模型训练过程。
- opts.alpha = 0.0; 表示学习率为0,即不使用学习率进行模型训练。
- opts.plot = 1; 表示在训练过程中会绘制训练误差曲线。
最后,通过dbnsetup和dbntrain函数对DBN网络进行初始化和训练。其中,trainXn为训练数据。
阅读全文