AttributeError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_15340/867494765.py in <module> 72 73 #公司类型 ---> 74 company_type = i.select_one( 75 'div > div:nth-child(1) > a > div.iteminfo__line.iteminfo__line2 > div.iteminfo__line2__compdesc' 76 ).text AttributeError: 'NoneType' object has no attribute 'text'

时间: 2024-02-10 13:14:41 浏览: 306
这个错误可能是由于在使用 `select_one()` 方法时,没有找到符合选择器条件的元素,导致返回了 `None`。因为 `None` 对象没有 `text` 属性,所以出现了 `'NoneType' object has no attribute 'text'` 的错误。 你可以在使用 `select_one()` 方法前,先使用 `select()` 方法来检查是否有符合条件的元素存在,如果有,则再使用 `select_one()` 方法来选择元素,否则可以进行错误处理。例如: ```python company_type_element = i.select('div > div:nth-child(1) > a > div.iteminfo__line.iteminfo__line2 > div.iteminfo__line2__compdesc') if company_type_element: company_type = company_type_element[0].text else: company_type = 'N/A' ``` 这里先使用 `select()` 方法来获取符合条件的所有元素,然后判断列表中是否有元素存在,如果有,则使用 `select_one()` 方法来选择第一个元素并获取其文本内容,否则将 `company_type` 设置为 `'N/A'`。这样可以避免出现 `'NoneType' object has no attribute 'text'` 的错误。
相关问题

AttributeError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_8532/2479922506.py in <module> 1 import xlrd 2 import numpy as np ----> 3 wb=xlrd.open("历年总人口.xls") 4 sheet=wb.sheet_by_index(0) 5 col_0=sheet.col_values(0) AttributeError: module 'xlrd' has no attribute 'open'

这个错误提示是因为 `xlrd` 模块中没有 `open` 这个函数,正确的函数是 `open_workbook`。所以需要将 `xlrd.open` 改成 `xlrd.open_workbook`。 下面是修改后的代码: ```python import xlrd import numpy as np wb = xlrd.open_workbook("历年总人口.xls") sheet = wb.sheet_by_index(0) col_0 = sheet.col_values(0)[38:] col_1 = sheet.col_values(1)[38:] col_2 = sheet.col_values(2)[38:] col_4 = sheet.col_values(4)[38:] year = [int(c) for c in col_0] total = [int(c) for c in col_1] man = [int(c) for c in col_2] woman = [int(c) for c in col_4] m = len(year) arr = np.array(year).reshape(m,1) arr = np.insert(arr,1,values=total,axis=1) arr = np.insert(arr,1,values=man,axis=1) arr = np.insert(arr,1,values=woman,axis=1) file='历年总人口.csv' np.savetxt(file,arr,fmt='%i',delimiter=',',comments='',header='年份,年末总人口,男性人口,女性人口') x = np.loadtxt(file,dtype=np.int,delimiter=',',skiprows=1) print(x) ```

AttributeError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_5316\1724028029.py in <module> ----> 1 data=wine_data.iloc[:,1:] 2 targe=wine_data.iloc[:,0] AttributeError: 'numpy.ndarray' object has no attribute 'iloc'

这是一个 Python 异常,表示尝试访问一个不存在的属性或方法。在你的情况下,它告诉你 numpy 数组对象没有名为 `iloc` 的属性,因此你不能使用 `iloc` 方法来访问数组的元素。 `iloc` 方法是 pandas 数据框架对象的方法。如果你想使用 `iloc` 方法来访问数据,请确保你的数据是 pandas 数据框架对象,而不是 numpy 数组对象。 要解决这个问题,你可以在将数据加载到 numpy 数组中之前,将数据加载到 pandas 数据框架中。你可以使用 pandas 库中的 `read_csv` 函数来加载 CSV 文件并将其转换为 pandas 数据框架。例如,以下代码将 CSV 文件加载到 `wine_data` 数据框架中: ```python import pandas as pd wine_data = pd.read_csv('wine.csv') ``` 然后,你可以使用 `iloc` 方法来访问数据框架中的元素,如下所示: ```python data = wine_data.iloc[:, 1:] target = wine_data.iloc[:, 0] ``` 这将返回数据框架中第 1 列以及从第 2 列到最后一列的所有列作为数据,以及第 0 列作为目标。
阅读全文

相关推荐

from sklearn.neural_network import MLPClassifier,MLPRegressor Traceback (most recent call last): File "C:\Users\wyq_0\AppData\Local\Temp\ipykernel_13656\921061210.py", line 1, in <module> from sklearn.neural_network import MLPClassifier,MLPRegressor File "C:\Users\wyq_0\python\lib\site-packages\sklearn\neural_network\__init__.py", line 10, in <module> from ._multilayer_perceptron import MLPClassifier File "C:\Users\wyq_0\python\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py", line 26, in <module> from ..metrics import accuracy_score, r2_score File "C:\Users\wyq_0\python\lib\site-packages\sklearn\metrics\__init__.py", line 42, in <module> from . import cluster File "C:\Users\wyq_0\python\lib\site-packages\sklearn\metrics\cluster\__init__.py", line 22, in <module> from ._unsupervised import silhouette_samples File "C:\Users\wyq_0\python\lib\site-packages\sklearn\metrics\cluster\_unsupervised.py", line 16, in <module> from ..pairwise import pairwise_distances_chunked File "C:\Users\wyq_0\python\lib\site-packages\sklearn\metrics\pairwise.py", line 33, in <module> from ._pairwise_distances_reduction import ArgKmin File "C:\Users\wyq_0\python\lib\site-packages\sklearn\metrics\_pairwise_distances_reduction\__init__.py", line 89, in <module> from ._dispatcher import ( File "C:\Users\wyq_0\python\lib\site-packages\sklearn\metrics\_pairwise_distances_reduction\_dispatcher.py", line 11, in <module> from ._base import _sqeuclidean_row_norms32, _sqeuclidean_row_norms64 File "sklearn\metrics\_pairwise_distances_reduction\_base.pyx", line 1, in init sklearn.metrics._pairwise_distances_reduction._base AttributeError: module 'sklearn.utils._openmp_helpers' has no attribute '__pyx_capi__'咋办

大家在看

recommend-type

B-6 用户手册.doc

一份专业的软件用户手册
recommend-type

基于ArcPy实现的熵权法赋值地理处理工具

熵权法赋值工具是一种用于计算栅格权重并将若干个栅格加权叠加为一个阻力面栅格的工具。它由两个脚本组成,分别用于计算各栅格的权重并输出为权重栅格,以及将这些栅格加权叠加为一个阻力面栅格。 在使用熵权法赋值工具时,首先需要准备输入的文件夹,单个文件夹中应该只存放单个栅格文件。在第一个脚本中,需要输入存放栅格的文件夹,单击运行后会生成一个名为result.tif的栅格文件。在第二个脚本中,需要输入存放权重栅格的文件夹,单个文件夹内存放若干个栅格,单击运行后会生成一个名为resistance.tif的权重栅格。 使用熵权法赋值工具可以方便地计算栅格的权重并将多个栅格叠加为一个阻力面栅格,在地理信息系统中有广泛的应用。 需要注意的是,本工具的使用环境为ArcGIS Desktop 10.7版本,如果您使用的是其他版本的ArcGIS,可能会出现兼容性问题。因此,在使用本工具时,应该确保您使用的是ArcGIS Desktop 10.7版本,以保证程序的正常运行。如果您使用的是其他版本的ArcGIS,可能需要升级或者降级到ArcGIS Desktop 10.7版本,才能使用本工具。
recommend-type

Ansys电磁场分析经典教程.zip_APDL_ansys_ansys电磁场_ansys磁场_电磁场

ansys APDL 电磁场 教程 经典
recommend-type

所示三级客户支638-@risk使用手册

服务实践中,建立了统一标准的 IT 服务台,经与客户的磨合沟通,确立了如图 5.2 所示三级客户支638 持体系: 639 640 图.5.2 ...三级客户支持体系........ 641 B 公司分别就服务台工程师,二线专家、厂商定义了其角色及职责描述,其中服务台工程师职642 责定义为: 643
recommend-type

Stateflow建模规范

Stateflow建模规范,设计模型搭建state flow一些规范

最新推荐

recommend-type

基于PHP+Mysql实现的酒店客房管理系统

后端基于PHP+mysql,简单实现了预订、入住、结账以及客户信息维护等功能。年代久远,注释较少,功能简陋,仅供学习交流。
recommend-type

springboot项目基于Hadoop的高校固定资产管理系统研究与实现_hot.zip

springboot项目基于Hadoop的高校固定资产管理系统研究与实现_hot,含有完整的源码和报告文档
recommend-type

基于AlexNet深度学习的11种中草药智能识别系统【python源码+c++ qt5界面+数据集+训练代码】目标识别、深度学习实战

本文基于AlexNet深度学习模型,通过百度爬取的较少图片,训练了一个进行中草药的识别模型,可用于识别11种不同的中草药类型有:{'曼陀罗': 0, '白花蛇舌草': 1, '芍药': 2, '苍耳': 3, '蒲公英': 4, '薄荷': 5, '藿香': 6, '蛇莓': 7, '金银花': 8, '鸡蛋花': 9, '龙葵': 10}。并基于此模型开发了一款带UI界面的中草药智能识别系统,可用于识别场景中的中草药类别,更方便进行功能的展示。该系统是基于python与c++ QT5开发的,支持图片识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习。
recommend-type

springboot项目基于协同过滤算法的私人诊所管理系统_to.zip

springboot项目基于协同过滤算法的私人诊所管理系统_to,含有完整的源码和报告文档
recommend-type

彩色铅笔形PPT柱形比例图-2.ppt

图表分类ppt
recommend-type

租赁合同编写指南及下载资源

资源摘要信息:《租赁合同》是用于明确出租方与承租方之间的权利和义务关系的法律文件。在实际操作中,一份详尽的租赁合同对于保障交易双方的权益至关重要。租赁合同应当包括但不限于以下要点: 1. 双方基本信息:租赁合同中应明确出租方(房东)和承租方(租客)的名称、地址、联系方式等基本信息。这对于日后可能出现的联系、通知或法律诉讼具有重要意义。 2. 房屋信息:合同中需要详细说明所租赁的房屋的具体信息,包括房屋的位置、面积、结构、用途、设备和家具清单等。这些信息有助于双方对租赁物有清晰的认识。 3. 租赁期限:合同应明确租赁开始和结束的日期,以及租期的长短。租赁期限的约定关系到租金的支付和合同的终止条件。 4. 租金和押金:租金条款应包括租金金额、支付周期、支付方式及押金的数额。同时,应明确规定逾期支付租金的处理方式,以及押金的退还条件和时间。 5. 维修与保养:在租赁期间,房屋的维护和保养责任应明确划分。通常情况下,房东负责房屋的结构和主要设施维修,而租客需负责日常维护及保持房屋的清洁。 6. 使用与限制:合同应规定承租方可以如何使用房屋以及可能的限制。例如,禁止非法用途、允许或禁止宠物、是否可以转租等。 7. 终止与续租:租赁合同应包括租赁关系的解除条件,如提前通知时间、违约责任等。同时,双方可以在合同中约定是否可以续租,以及续租的条件。 8. 解决争议的条款:合同中应明确解决可能出现的争议的途径,包括适用法律、管辖法院等,有助于日后纠纷的快速解决。 9. 其他可能需要的条款:根据具体情况,合同中可能还需要包括关于房屋保险、税费承担、合同变更等内容。 下载资源链接:【下载自www.glzy8.com管理资源吧】Rental contract.DOC 该资源为一份租赁合同模板,对需要进行房屋租赁的个人或机构提供了参考价值。通过对合同条款的详细列举和解释,该文档有助于用户了解和制定自己的租赁合同,从而在房屋租赁交易中更好地保护自己的权益。感兴趣的用户可以通过提供的链接下载文档以获得更深入的了解和实际操作指导。
recommend-type

【项目管理精英必备】:信息系统项目管理师教程习题深度解析(第四版官方教材全面攻略)

![信息系统项目管理师教程-第四版官方教材课后习题-word可编辑版](http://www.bjhengjia.net/fabu/ewebeditor/uploadfile/20201116152423446.png) # 摘要 信息系统项目管理是确保项目成功交付的关键活动,涉及一系列管理过程和知识领域。本文深入探讨了信息系统项目管理的各个方面,包括项目管理过程组、知识领域、实践案例、管理工具与技术,以及沟通和团队协作。通过分析不同的项目管理方法论(如瀑布、迭代、敏捷和混合模型),并结合具体案例,文章阐述了项目管理的最佳实践和策略。此外,本文还涵盖了项目管理中的沟通管理、团队协作的重要性,
recommend-type

最具代表性的改进过的UNet有哪些?

UNet是一种广泛用于图像分割任务的卷积神经网络结构,它的特点是结合了下采样(编码器部分)和上采样(解码器部分),能够保留细节并生成精确的边界。为了提高性能和适应特定领域的需求,研究者们对原始UNet做了许多改进,以下是几个最具代表性的变种: 1. **DeepLab**系列:由Google开发,通过引入空洞卷积(Atrous Convolution)、全局平均池化(Global Average Pooling)等技术,显著提升了分辨率并保持了特征的多样性。 2. **SegNet**:采用反向传播的方式生成全尺寸的预测图,通过上下采样过程实现了高效的像素级定位。 3. **U-Net+
recommend-type

惠普P1020Plus驱动下载:办公打印新选择

资源摘要信息: "最新惠普P1020Plus官方驱动" 1. 惠普 LaserJet P1020 Plus 激光打印机概述: 惠普 LaserJet P1020 Plus 是惠普公司针对家庭、个人办公以及小型办公室(SOHO)市场推出的一款激光打印机。这款打印机的设计注重小巧体积和便携操作,适合空间有限的工作环境。其紧凑的设计和高效率的打印性能使其成为小型企业或个人用户的理想选择。 2. 技术特点与性能: - 预热技术:惠普 LaserJet P1020 Plus 使用了0秒预热技术,能够极大减少打印第一张页面所需的等待时间,首页输出时间不到10秒。 - 打印速度:该打印机的打印速度为每分钟14页,适合处理中等规模的打印任务。 - 月打印负荷:月打印负荷高达5000页,保证了在高打印需求下依然能稳定工作。 - 标配硒鼓:标配的2000页打印硒鼓能够为用户提供较长的使用周期,减少了更换耗材的频率,节约了长期使用成本。 3. 系统兼容性: 驱动程序支持的操作系统包括 Windows Vista 64位版本。用户在使用前需要确保自己的操作系统版本与驱动程序兼容,以保证打印机的正常工作。 4. 市场表现: 惠普 LaserJet P1020 Plus 在上市之初便获得了市场的广泛认可,创下了百万销量的辉煌成绩,这在一定程度上证明了其可靠性和用户对其性能的满意。 5. 驱动程序文件信息: 压缩包内包含了适用于该打印机的官方驱动程序文件 "lj1018_1020_1022-HB-pnp-win64-sc.exe"。该文件是安装打印机驱动的执行程序,用户需要下载并运行该程序来安装驱动。 另一个文件 "jb51.net.txt" 从命名上来看可能是一个文本文件,通常这类文件包含了关于驱动程序的安装说明、版本信息或是版权信息等。由于具体内容未提供,无法确定确切的信息。 6. 使用场景: 由于惠普 LaserJet P1020 Plus 的打印速度和负荷能力,它适合那些需要快速、频繁打印文档的用户,例如行政助理、会计或小型法律事务所。它的紧凑设计也使得这款打印机非常适合在桌面上使用,从而不占用过多的办公空间。 7. 后续支持与维护: 用户在购买后可以通过惠普官方网站获取最新的打印机驱动更新以及技术支持。在安装新驱动之前,建议用户先卸载旧的驱动程序,以避免版本冲突或不必要的错误。 8. 其它注意事项: - 用户在使用打印机时应注意按照官方提供的维护说明定期进行清洁和保养,以确保打印质量和打印机的使用寿命。 - 如果在打印过程中遇到任何问题,应先检查打印机设置、驱动程序是否正确安装以及是否有足够的打印纸张和墨粉。 综上所述,惠普 LaserJet P1020 Plus 是一款性能可靠、易于使用的激光打印机,特别适合小型企业或个人用户。正确的安装和维护可以确保其稳定和高效的打印能力,满足日常办公需求。
recommend-type

数字电路实验技巧:10大策略,让你的实验效率倍增!

![数字电路实验技巧:10大策略,让你的实验效率倍增!](https://avatars.dzeninfra.ru/get-zen_doc/3964212/pub_5f76d5f2109e8f703cdee289_5f76f3c10d5f8951c997167a/scale_1200) # 摘要 本论文详细介绍了数字电路实验的基础理论、设备使用、设计原则、实践操作、调试与故障排除以及报告撰写与成果展示。首先探讨了数字电路实验所需的基本理论和实验设备的种类与使用技巧,包括测量和故障诊断方法。接着,深入分析了电路设计的原则,涵盖设计流程、逻辑简化、优化策略及实验方案的制定。在实践操作章节中,具体