matlab实现自注意力机制代码
时间: 2023-09-13 19:07:38 浏览: 209
matlab注意力机制总结.zip
5星 · 资源好评率100%
以下是Matlab实现自注意力机制的代码:
```matlab
function [output] = self_attention(input, num_heads)
% input: 输入的数据,大小为 [seq_len, embedding_dim]
% num_heads: 多头注意力的头数
% output: 输出的结果,大小为 [seq_len, embedding_dim]
seq_len = size(input, 1);
embedding_dim = size(input, 2);
% 计算 Q、K、V
Q = input;
K = input;
V = input;
% 按头数拆分 Q、K、V
Q = reshape(Q, [seq_len, embedding_dim/num_heads, num_heads]);
Q = permute(Q, [3, 1, 2]);
K = reshape(K, [seq_len, embedding_dim/num_heads, num_heads]);
K = permute(K, [3, 1, 2]);
V = reshape(V, [seq_len, embedding_dim/num_heads, num_heads]);
V = permute(V, [3, 1, 2]);
% 计算多头注意力
attention_scores = zeros(num_heads, seq_len, seq_len);
for i = 1:num_heads
attention_scores(i, :, :) = Q(i, :, :) * K(i, :, :)' / sqrt(embedding_dim/num_heads);
end
attention_scores = softmax(attention_scores, 3);
% 计算输出
output = zeros(seq_len, embedding_dim);
for i = 1:num_heads
output = output + attention_scores(i, :, :) * V(i, :, :);
end
output = reshape(output, [seq_len, embedding_dim]);
end
```
其中,`softmax`函数为softmax操作的实现,可以自行编写或调用Matlab内置的softmax函数。
阅读全文