基于深度学习的红外图像和可见光图像的融合python
时间: 2023-06-12 21:03:59 浏览: 186
红外图像和可见光图像融合可以提高图像的质量和信息丰富度,可以应用于很多领域,比如目标检测、识别和追踪等。下面是一个基于深度学习的红外图像和可见光图像融合的Python实现示例:
1. 安装必要的库:
```python
pip install opencv-python numpy tensorflow keras
```
2. 加载红外图像和可见光图像:
```python
import cv2
import numpy as np
infrared = cv2.imread('infrared_image.jpg', 0)
visible = cv2.imread('visible_image.jpg', 0)
```
3. 对图像进行预处理:
```python
infrared = cv2.resize(infrared, (256, 256))
visible = cv2.resize(visible, (256, 256))
infrared = infrared.astype(np.float32) / 255
visible = visible.astype(np.float32) / 255
infrared = np.expand_dims(infrared, axis=2)
visible = np.expand_dims(visible, axis=2)
input_data = np.concatenate((infrared, visible), axis=2)
```
4. 定义模型:
```python
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, Concatenate, BatchNormalization
input_layer = Input(shape=(256, 256, 2))
# 编码器
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(input_layer)
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D((2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D((2, 2))(conv2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D((2, 2))(conv3)
# 解码器
up4 = UpSampling2D((2, 2))(pool3)
conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(up4)
conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv4)
up5 = UpSampling2D((2, 2))(conv4)
conv5 = Conv2D(64, (3, 3), activation='relu', padding='same')(up5)
conv5 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv5)
up6 = UpSampling2D((2, 2))(conv5)
conv6 = Conv2D(32, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv6)
merge7 = Concatenate(axis=3)([conv6, conv1])
conv7 = Conv2D(32, (3, 3), activation='relu', padding='same')(merge7)
conv7 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv7)
output_layer = Conv2D(1, (1, 1), activation='sigmoid', padding='same')(conv7)
model = Model(inputs=input_layer, outputs=output_layer)
```
5. 训练模型:
```python
model.compile(optimizer='adam', loss='mse')
model.fit(input_data, infrared, batch_size=32, epochs=100)
```
6. 进行图像融合:
```python
output = model.predict(input_data)
output = output.squeeze()
output = output * 255
output = output.astype(np.uint8)
cv2.imwrite('fusion_image.jpg', output)
```
以上就是一个基于深度学习的红外图像和可见光图像融合的Python实现示例,你可以根据自己的需求进行调整和改进。
阅读全文