有一个区域,区域中有很多矩形,矩形左上角和右下角的坐标分别是(x1,y1),(x2,y2),每个矩形有自己的id,如果通过四叉树的方式用c++实现快速判断,任意一个点的坐标(x,y)在区域中的那个矩形中,返回矩形的id
时间: 2023-08-05 17:03:29 浏览: 187
二叉树的功能实现,用c++实现的。
这个问题可以通过使用四叉树来实现。 四叉树是一种可以快速查找和添加元素的数据结构,它将二维空间划分为四个象限,并且每个象限都是一个四叉树节点。每个节点可以包含许多数据点,如果一个节点中包含的数据点过多,它就会被分裂成四个子节点。四叉树的根节点代表整个区域,每个叶子节点代表一个矩形。
我们可以通过递归地遍历四叉树来找到包含给定点的叶子节点,并返回该叶子节点所代表的矩形的id。下面是一个简单的C++实现:
```c++
struct Point {
double x, y;
};
struct Rectangle {
int id;
Point topLeft, bottomRight;
};
class QuadTree {
public:
QuadTree(Rectangle boundary, int capacity);
bool insert(Rectangle rect);
int search(Point p);
private:
Rectangle boundary;
int capacity;
std::vector<Rectangle> points;
QuadTree *northwest;
QuadTree *northeast;
QuadTree *southwest;
QuadTree *southeast;
bool contains(Rectangle rect, Point p);
void subdivide();
};
QuadTree::QuadTree(Rectangle boundary, int capacity)
: boundary(boundary), capacity(capacity), points(), northwest(nullptr),
northeast(nullptr), southwest(nullptr), southeast(nullptr) {}
bool QuadTree::insert(Rectangle rect) {
if (!contains(boundary, rect.topLeft) || !contains(boundary, rect.bottomRight)) {
return false;
}
if (points.size() < capacity) {
points.push_back(rect);
return true;
}
if (northwest == nullptr) {
subdivide();
}
if (northwest->insert(rect)) return true;
if (northeast->insert(rect)) return true;
if (southwest->insert(rect)) return true;
if (southeast->insert(rect)) return true;
return false;
}
int QuadTree::search(Point p) {
if (!contains(boundary, p)) {
return -1;
}
for (Rectangle rect : points) {
if (contains(rect, p)) {
return rect.id;
}
}
if (northwest == nullptr) {
return -1;
}
int id = northwest->search(p);
if (id != -1) return id;
id = northeast->search(p);
if (id != -1) return id;
id = southwest->search(p);
if (id != -1) return id;
id = southeast->search(p);
if (id != -1) return id;
return -1;
}
bool QuadTree::contains(Rectangle rect, Point p) {
return (p.x >= rect.topLeft.x && p.x <= rect.bottomRight.x &&
p.y >= rect.topLeft.y && p.y <= rect.bottomRight.y);
}
void QuadTree::subdivide() {
double x = boundary.topLeft.x + (boundary.bottomRight.x - boundary.topLeft.x) / 2;
double y = boundary.topLeft.y + (boundary.bottomRight.y - boundary.topLeft.y) / 2;
Rectangle nw = Rectangle{0, {boundary.topLeft.x, boundary.topLeft.y}, {x, y}};
northwest = new QuadTree(nw, capacity);
Rectangle ne = Rectangle{0, {x, boundary.topLeft.y}, {boundary.bottomRight.x, y}};
northeast = new QuadTree(ne, capacity);
Rectangle sw = Rectangle{0, {boundary.topLeft.x, y}, {x, boundary.bottomRight.y}};
southwest = new QuadTree(sw, capacity);
Rectangle se = Rectangle{0, {x, y}, {boundary.bottomRight.x, boundary.bottomRight.y}};
southeast = new QuadTree(se, capacity);
}
```
使用上述代码,你可以这样调用:
```c++
int main() {
// Create a quadtree with the boundary of (0, 0) to (100, 100)
QuadTree quadtree(Rectangle{0, Point{0, 0}, Point{100, 100}}, 4);
// Insert some rectangles into the quadtree
quadtree.insert(Rectangle{1, Point{10, 10}, Point{30, 30}});
quadtree.insert(Rectangle{2, Point{40, 20}, Point{60, 40}});
quadtree.insert(Rectangle{3, Point{70, 50}, Point{90, 70}});
// Search for the rectangle containing point (25, 25)
int rectId = quadtree.search(Point{25, 25});
if (rectId != -1) {
std::cout << "Point (25, 25) is in rectangle " << rectId << std::endl;
} else {
std::cout << "Point (25, 25) is not in any rectangle" << std::endl;
}
return 0;
}
```
这将输出:
```
Point (25, 25) is in rectangle 1
```
阅读全文