r_img = cv2.cvtColor(r_img, cv2.COLOR_BGR2RGB) r_img = Image.fromarray(cv2.cvtColor(r_img,cv2.COLOR_BGR2RGB))什么意思
时间: 2024-05-23 12:10:56 浏览: 124
这两行代码都是将OpenCV读取的BGR格式的图像转换为RGB格式。
第一行代码使用OpenCV的cvtColor函数将BGR格式的图像转换为RGB格式。
第二行代码使用NumPy将BGR格式的图像转换为RGB格式,并使用PIL库中的Image.fromarray函数将NumPy数组转换为PIL图像对象。这通常用于将OpenCV图像转换为PIL图像对象,以便进行更多的图像处理或保存到硬盘上。
相关问题
img = self.screen.grabWindow(hwnd).toImage() 使用 cv2 保存为BMP
你可以使用 OpenCV 的 `imwrite()` 函数将图像保存为 BMP 格式。以下是一个示例代码:
```python
import cv2
from PyQt5.QtGui import QWindow, QScreen, QPixmap
# 获取窗口句柄和屏幕对象
hwnd = window.winId()
screen = QGuiApplication.primaryScreen()
# 获取窗口图像
img = screen.grabWindow(hwnd).toImage()
# 将图像转换为 OpenCV 格式
cv_img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# 保存为 BMP 格式
cv2.imwrite("image.bmp", cv_img)
```
在这个示例中,我们首先使用 `QGuiApplication.primaryScreen()` 函数获取系统主屏幕对象。然后,我们使用 `screen.grabWindow(hwnd).toImage()` 函数获取窗口图像,并将其转换为 OpenCV 格式。最后,我们使用 `cv2.imwrite()` 函数将图像保存为 BMP 格式。
请注意,你需要先安装 OpenCV 库才能使用上述代码。你可以使用以下命令在终端中安装 OpenCV:
```
pip install opencv-python
```
写出下列代码可以实现什么功能: #Img = cv2.undistort(Img, K, Dist) Img = cv2.resize(Img,(240,180),interpolation=cv2.INTER_AREA) #将opencv读取的图片resize来提高帧率 img = cv2.GaussianBlur(Img, (5, 5), 0) imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 将BGR图像转为HSV lower = np.array([h_min, s_min, v_min]) upper = np.array([h_max, s_max, v_max]) mask = cv2.inRange(imgHSV, lower, upper) # 创建蒙版 指定颜色上下限 范围内颜色显示 否则过滤 kernel_width = 4 # 调试得到的合适的膨胀腐蚀核大小 kernel_height = 4 # 调试得到的合适的膨胀腐蚀核大小 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_width, kernel_height)) mask = cv2.erode(mask, kernel) mask = cv2.dilate(mask, kernel) mask = cv2.dilate(mask, kernel) light_img = mask[:100,:200 ] cv2.imshow("light",light_img) # 输出红绿灯检测结果 Img1 = Img Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB) Img2 = Img cropped2 = Img2[70:128, 0:100] h,w,d = cropped2.shape #提取图像的信息 Img = Image.fromarray(Img) Img = ValImgTransform(Img) # 连锁其它变形,变为tesor Img = torch.unsqueeze(Img, dim=0) # 对tesor进行升维 inputImg = Img.float().to(Device) # 让数据能够使用 OutputImg = Unet(inputImg) Output = OutputImg.cpu().numpy()[0] OutputImg = OutputImg.cpu().numpy()[0, 0] OutputImg = (OutputImg * 255).astype(np.uint8) Input = Img.numpy()[0][0] Input = (Normalization(Input) * 255).astype(np.uint8) OutputImg = cv2.resize(OutputImg,(128,128),interpolation=cv2.INTER_AREA) # 将opencv读取的图片resize来提高帧率 ResultImg = cv2.cvtColor(Input, cv2.COLOR_GRAY2RGB) ResultImg[..., 1] = OutputImg cropped = ResultImg[80:128, 20:100] cropped1 = OutputImg[80:128, 20:100] cv2.imshow("out", cropped1)#显示处理后的图像 cv2.imshow("Img2", Img2) cv2.imshow("Img0", cropped)#显示感兴趣区域图像 print(reached)
这段代码实现的功能是:
1. 读取图像并进行图像去畸变操作,使用cv2.undistort函数。
2. 将图像的大小调整为240x180像素,使用cv2.resize函数。
3. 对图像进行高斯模糊处理,使用cv2.GaussianBlur函数。
4. 将图像从BGR色彩空间转换为HSV色彩空间,使用cv2.cvtColor函数。
5. 创建一个掩码(mask),根据指定的颜色上下限范围过滤出感兴趣的颜色区域,使用cv2.inRange函数。
6. 对掩码进行膨胀和腐蚀操作,使用cv2.erode和cv2.dilate函数。
7. 提取红绿灯区域的图像并显示,使用cv2.imshow函数。
8. 对图像进行一系列处理,包括转换色彩空间、裁剪、调整大小等操作。
9. 使用神经网络模型(Unet)对图像进行处理,并得到处理后的图像。
10. 对处理后的图像进行显示,使用cv2.imshow函数。
11. 打印变量"reached"的值。
请注意,该代码片段缺少一些必要的导入语句和变量定义语句,因此无法单独运行。
阅读全文