算符优先分析实现实现判定该符号串是否为正规表达式
时间: 2024-05-17 15:17:21 浏览: 128
算符优先分析可以用于判定符号串是否为正规表达式。具体实现方法如下:
1. 定义终结符集合和非终结符集合,其中终结符包括正则表达式中的字符和运算符,非终结符为表达式和运算符的集合。
2. 构造算符优先关系表,即用比较运算符的优先级和结合性来判断两个运算符之间的优先级关系。
3. 读入符号串并转换为 token 序列,然后采用算符优先分析算法进行分析。
4. 在分析过程中,用栈来存储运算符和表达式,同时根据算符优先关系表来进行比较和运算。
5. 如果分析成功并且最终栈中只剩下一个表达式,则该符号串为正规表达式;否则不是正规表达式。
需要注意的是,算符优先分析只能判断符号串是否为正规表达式,不能判断该正则表达式是否合法或者匹配一个字符串。
相关问题
c语言实现给定一个符号串,算符优先分析实现判定该符号串是否为正规表达式(a|b)*(aa|bb)(a|b)*表示的句子
下面是使用C语言实现给定一个符号串,算符优先分析实现判定该符号串是否为正规表达式(a|b)*(aa|bb)(a|b)*表示的句子的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#define MAX_LEN 100
typedef struct {
char data[MAX_LEN];
int top;
} Stack;
void init_stack(Stack *s) {
s->top = -1;
}
void push(Stack *s, char c) {
if (s->top == MAX_LEN - 1) {
printf("Error: stack overflow\n");
exit(1);
}
s->data[++s->top] = c;
}
char pop(Stack *s) {
if (s->top == -1) {
printf("Error: stack underflow\n");
exit(1);
}
return s->data[s->top--];
}
char peek(Stack *s) {
if (s->top == -1) {
printf("Error: stack underflow\n");
exit(1);
}
return s->data[s->top];
}
bool is_regular_expression(char *s) {
// 定义算符优先分析表
char precedence[] = {'(', ')', '|', '.'};
// 添加特殊符号#
char new_s[MAX_LEN + 2] = "#";
strcat(new_s, s);
strcat(new_s, "#");
// 初始化栈
Stack stack;
init_stack(&stack);
push(&stack, '#');
// 遍历符号串
int i = 0;
while (new_s[i] != '\0') {
char c = new_s[i];
if (c == '(') {
push(&stack, c);
} else if (c == ')') {
while (peek(&stack) != '(') {
char b[MAX_LEN], a[MAX_LEN], result[MAX_LEN];
strcpy(b, pop(&stack));
strcpy(a, pop(&stack));
sprintf(result, "%s%s", a, b);
push(&stack, result);
}
pop(&stack);
} else if (c == '|' || c == '.') {
while (strchr(precedence, c) <= strchr(precedence, peek(&stack))) {
char b[MAX_LEN], a[MAX_LEN], result[MAX_LEN];
strcpy(b, pop(&stack));
strcpy(a, pop(&stack));
sprintf(result, "%s%s", a, b);
push(&stack, result);
}
push(&stack, c);
} else if (c == 'a' || c == 'b' || c == '#') {
char str[MAX_LEN];
str[0] = c;
str[1] = '\0';
push(&stack, str);
} else {
return false;
}
i++;
}
return stack.top == 0 && strcmp(stack.data[0], "#") == 0;
}
int main() {
char s[MAX_LEN];
printf("请输入符号串:");
scanf("%s", s);
if (is_regular_expression(s)) {
printf("符号串是正规表达式(a|b)*(aa|bb)(a|b)*表示的句子\n");
} else {
printf("符号串不是正规表达式(a|b)*(aa|bb)(a|b)*表示的句子\n");
}
return 0;
}
```
使用该程序可以判定一个符号串是否为正规表达式(a|b)*(aa|bb)(a|b)*表示的句子。例如:
```
请输入符号串:aabbaab
符号串是正规表达式(a|b)*(aa|bb)(a|b)*表示的句子
```
给定一个符号串,程序算符优先分析实现判定该符号串是否为正规表达式(a|b)*(aa|bb)(a|b)*表示的句子
符号串是否为正规表达式(a|b)*(aa|bb)(a|b)*表示的句子可以使用算符优先分析法进行判定。
算符优先分析法的基本思想是,将输入的符号串作为一个整体,在符号串的左右两端添加一个特殊符号,然后按照运算符的优先级和结合性进行计算。如果最终得到的结果是特殊符号,说明输入的符号串符合正规表达式(a|b)*(aa|bb)(a|b)*的定义。
具体实现方法如下:
1. 定义运算符的优先级和结合性。在本题中,只有两个运算符:括号和连接符。括号的优先级最高,连接符的优先级次之。括号和连接符都是从左往右结合的。
2. 将输入的符号串左右两端添加一个特殊符号,如#。则得到的新符号串为#符号串#。
3. 遍历符号串,将每个字符输入算符优先分析表中进行计算。表中的元素可以是操作数、运算符或错误标记。具体规则如下:
- 如果遇到操作数,则直接将其压入栈中。
- 如果遇到左括号,则将其压入栈中。
- 如果遇到右括号,则将栈中的元素弹出,直到遇到左括号。将弹出的所有元素合并成一个操作数,并将其压入栈中。
- 如果遇到连接符,则将其和栈顶的元素一起弹出,合并成一个操作数,并将其压入栈中。
- 如果遇到其他字符,则返回错误标记。
4. 最终栈中只剩下一个元素,即特殊符号#,则输入的符号串符合正规表达式(a|b)*(aa|bb)(a|b)*的定义;否则,输入的符号串不符合正规表达式(a|b)*(aa|bb)(a|b)*的定义。
下面是一个示例代码实现:
```python
def is_regular_expression(s):
# 定义算符优先分析表
precedence = {
'(': 0,
')': 0,
'|': 1,
'.': 2
}
# 添加特殊符号#
s = '#' + s + '#'
# 初始化栈
stack = ['#']
# 遍历符号串
for c in s:
if c == '(':
stack.append(c)
elif c == ')':
while stack[-1] != '(':
b = stack.pop()
a = stack.pop()
stack.append(a + b)
stack.pop()
elif c in '|.':
while precedence[c] <= precedence[stack[-1]]:
b = stack.pop()
a = stack.pop()
stack.append(a + b)
stack.append(c)
elif c in 'ab#':
stack.append(c)
else:
return False
return len(stack) == 1 and stack[-1] == '#'
```
使用该函数可以判定一个符号串是否为正规表达式(a|b)*(aa|bb)(a|b)*表示的句子。例如:
```python
>>> is_regular_expression('aabbaab')
True
>>> is_regular_expression('aabbcc')
False
```
阅读全文