解释下列代码column = z_LRFMC.columns.tolist() # 列表头 fig = plt.figure(figsize=(22, 12), dpi=75) # 指定绘图对象宽度和高度 for i in range(5): plt.subplot(2, 3, i + 1) # 2行3列子图 ax = sns.kdeplot(data=z_LRFMC[column[i]], color='blue', shade=True) plt.ylabel(column[i], fontsize=36) plt.show()
时间: 2024-01-28 17:04:06 浏览: 97
这段代码是用来绘制数据集z_LRFMC中前5列的核密度估计图。首先,通过`z_LRFMC.columns.tolist()`获取了数据集的列名,并将其转化为列表。然后通过`plt.figure()`指定了绘图对象的大小。接着,通过`for`循环来遍历前5列数据,并使用`plt.subplot()`函数将整个绘图区域分成2行3列,每个子图占据一个位置。在每个子图中,使用`sns.kdeplot()`函数绘制了当前列的核密度估计图,并将图形颜色设置为蓝色,同时使用阴影使得图形更加清晰。最后,使用`plt.ylabel()`函数添加了y轴标签。最后使用`plt.show()`函数将整个绘图显示出来。
相关问题
column = data.columns.tolist() fig = plt.figure(figsize=(12,4), dpi=128) for i in range(8): plt.subplot(2,4, i + 1) sns.boxplot(data=data[column[i]], orient="v",width=0.5) plt.ylabel(column[i], fontsize=12) plt.tight_layout() plt.show() #kdeplot column = data.columns.tolist() fig = plt.figure(figsize=(12,4), dpi=128) for i in range(8): plt.subplot(2,4, i + 1) sns.kdeplot(data=data[column[i]],color='blue',shade= True) plt.ylabel(column[i], fontsize=12) plt.tight_layout() plt.show() sns.pairplot(data[column],diag_kind='kde') plt.savefig('Scatter plot.jpg',dpi=256)
这段代码的作用是对"data"数据框的每个列进行数据可视化。
首先,通过"data.columns.tolist()"将"data"数据框的列名转换为列表,并将其存储在名为"column"的变量中。
然后,创建一个大小为(12, 4)且分辨率为128的图形对象,使用"plt.figure(figsize=(12,4), dpi=128)"。
接下来,使用循环遍历范围为8的整数,从1开始。在每次迭代中,使用"plt.subplot(2,4, i + 1)"创建一个2x4的子图网格,并选择当前迭代的子图。
然后,使用"sns.boxplot(data=data[column[i]], orient='v',width=0.5)"绘制第i个列的箱线图,其中"data=data[column[i]]"表示要绘制的数据,"orient='v'"表示箱线图的方向为垂直,"width=0.5"表示箱线图的宽度为0.5。
或者,使用"sns.kdeplot(data=data[column[i]],color='blue',shade=True)"绘制第i个列的核密度估计图,其中"data=data[column[i]]"表示要绘制的数据,"color='blue'"表示曲线的颜色为蓝色,"shade=True"表示在曲线下方填充阴影。
在每个子图中,使用"plt.ylabel(column[i], fontsize=12)"添加y轴标签,标签内容为当前迭代的列名。
通过"plt.tight_layout()"可以调整子图之间的间距和布局。
最后使用"plt.show()"显示图形。
另外,代码中还包含了一个额外的部分,使用"sns.pairplot(data[column],diag_kind='kde')"绘制了一个散点图矩阵,并选择了核密度估计作为对角线上的图形。然后使用"plt.savefig('Scatter plot.jpg',dpi=256)"将图形保存为名为"Scatter plot.jpg"的文件,分辨率为256 dpi。
# Look through unique values in each categorical column categorical_cols = train_df.select_dtypes(include="object").columns.tolist() for col in categorical_cols: print(f"{col}", f"Number of unique entries: {len(train_df[col].unique().tolist())},") print(train_df[col].unique().tolist()) def plot_bar_chart(df, columns, grid_rows, grid_cols, x_label='', y_label='', title='', whole_numbers_only=False, count_labels=True, as_percentage=True): num_plots = len(columns) grid_size = grid_rows * grid_cols num_rows = math.ceil(num_plots / grid_cols) if num_plots == 1: fig, axes = plt.subplots(1, 1, figsize=(12, 8)) axes = [axes] # Wrap the single axes in a list for consistent handling else: fig, axes = plt.subplots(num_rows, grid_cols, figsize=(12, 8)) axes = axes.ravel() # Flatten the axes array to iterate over it for i, column in enumerate(columns): df_column = df[column] if whole_numbers_only: df_column = df_column[df_column % 1 == 0] ax = axes[i] y = [num for (s, num) in df_column.value_counts().items()] x = [s for (s, num) in df_column.value_counts().items()] ax.bar(x, y, color='blue', alpha=0.5) try: ax.set_xticks(range(x[-1], x[0] + 1)) except: pass ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.set_title(title + ' - ' + column) if count_labels: df_col = df_column.value_counts(normalize=True).mul(100).round(1).astype(str) + '%' for idx, (year, value) in enumerate(df_column.value_counts().items()): if as_percentage == False: ax.annotate(f'{value}\n', xy=(year, value), ha='center', va='center') else: ax.annotate(f'{df_col[year]}\n', xy=(year, value), ha='center', va='center', size=8) if num_plots < grid_size: for j in range(num_plots, grid_size): fig.delaxes(axes[j]) # Remove empty subplots if present plt.tight_layout() plt.show()
这段代码定义了一个名为plot_bar_chart的函数,它可以绘制柱状图。函数的输入包括一个数据框(df)、一个列名的列表(columns)、网格的行数和列数(grid_rows和grid_cols)、x轴和y轴标签(x_label和y_label)、标题(title)、是否只显示整数(whole_numbers_only)、是否在图上显示数据标签(count_labels)、以及是否以百分比形式显示数据标签(as_percentage)。
在函数内部,它首先计算需要绘制的子图的数量,然后根据网格的行数和列数创建子图。接下来,对于每个给定的列名,函数从数据框中选择该列,并将其存储在变量df_column中。如果whole_numbers_only为True,则函数只绘制整数值。接着,函数将x轴和y轴的值分别设置为列中每个唯一值的出现次数和值本身。最后,函数在每个子图上绘制柱状图,并将数据标签添加到每个条形上。如果没有足够的子图来填充整个网格,则函数会删除空的子图以使图像更清晰。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)