解释scaled_loss = scaler.scale(loss) scaled_loss.backward()

时间: 2023-08-31 10:06:30 浏览: 66
这是 ChitGPT 中使用混合精度训练时的代码片段。在混合精度训练中,通过使用半精度浮点数(FP16)来加速训练,同时保持模型精度。具体来说,`scaler.scale(loss)` 使用 PyTorch 的 GradScaler 对损失值进行缩放,从而避免在 FP16 下出现梯度下降过慢的问题。缩放后的损失值 `scaled_loss` 再通过反向传播计算梯度 `scaled_loss.backward()`,从而更新模型的参数。 需要注意的是,在使用混合精度训练时,由于在 FP16 下计算梯度可能会出现溢出或下溢的问题,因此需要使用 GradScaler 对损失值进行缩放。另外,由于在 FP16 下计算梯度可能会损失一些精度,因此需要在反向传播之前使用 `scaler.unscale_(optimizer)` 将优化器的参数进行缩放,以避免权重更新过大。
相关问题

写一个python Flask销售预测系统,系统有一个suanfa.py文件,该文件的作用:先读取shuju.csv(共有24条数据,包含Year、Month和TotalPrice三个属性),然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback):将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4,然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数,定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型求出MSE,保存模型。有一个predict.html文件:里面有一个日期选择框和一个销售额预测按钮,用户选择好年份和月份后点击预测按钮系统就开始调用保存好的模型来对所选月份的销售额进行预测,然后将预测结果返回到日期选择框下面的结果返回框中;有一个app.py文件:定义路径。用flask和bootstrap、LayUI写出完整详细代码

对于这个任务,我们需要完成以下几个步骤: 1. 编写算法脚本 suanfa.py,用于数据处理、模型训练和预测。 2. 编写 Flask 应用 app.py,用于处理用户请求并返回结果。 3. 编写 HTML 页面 predict.html,用于获取用户输入并向后端发送请求。 下面是详细的代码: suanfa.py ```python import pandas as pd import numpy as np import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler def split_data(data, lookback): """ 划分数据集为训练集和测试集 :param data: DataFrame格式的原始数据集 :param lookback: 窗口大小,即用前几个月的销售额来预测下一个月的销售额 :return: (训练集输入数据, 训练集输出数据, 测试集输入数据, 测试集输出数据, scaler) """ data_raw = data.to_numpy() scaler = MinMaxScaler(feature_range=(-1, 1)) data_scaled = scaler.fit_transform(data_raw) result = [] for index in range(len(data_scaled) - lookback): result.append(data_scaled[index: index + lookback]) result = np.array(result) row = round(0.8 * result.shape[0]) train = result[:int(row), :] np.random.shuffle(train) x_train = train[:, :-1] y_train = train[:, -1][:, -1] x_test = result[int(row):, :-1] y_test = result[int(row):, -1][:, -1] x_train = torch.from_numpy(x_train).type(torch.Tensor) x_test = torch.from_numpy(x_test).type(torch.Tensor) y_train = torch.from_numpy(y_train).type(torch.Tensor) y_test = torch.from_numpy(y_test).type(torch.Tensor) return x_train, y_train, x_test, y_test, scaler class LSTM(nn.Module): def __init__(self, input_size=1, hidden_layer_size=100, output_size=1): super().__init__() self.hidden_layer_size = hidden_layer_size self.lstm = nn.LSTM(input_size, hidden_layer_size) self.linear = nn.Linear(hidden_layer_size, output_size) self.hidden_cell = (torch.zeros(1, 1, self.hidden_layer_size), torch.zeros(1, 1, self.hidden_layer_size)) def forward(self, input_seq): lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq), 1, -1), self.hidden_cell) predictions = self.linear(lstm_out.view(len(input_seq), -1)) return predictions[-1] def train_model(data, lookback, model_path): """ 训练模型并保存 :param data: DataFrame格式的原始数据集 :param lookback: 窗口大小,即用前几个月的销售额来预测下一个月的销售额 :param model_path: 保存模型的路径 """ x_train, y_train, x_test, y_test, scaler = split_data(data, lookback) model = LSTM() loss_function = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) epochs = 150 for i in range(epochs): for j in range(x_train.size()[0]): optimizer.zero_grad() model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size), torch.zeros(1, 1, model.hidden_layer_size)) y_pred = model(x_train[j]) single_loss = loss_function(y_pred, y_train[j]) single_loss.backward() optimizer.step() if i % 25 == 1: print(f'epoch: {i:3} loss: {single_loss.item():10.8f}') torch.save(model.state_dict(), model_path) print("Model saved") def predict(model_path, input_date): """ 使用保存的模型预测销售额 :param model_path: 保存模型的路径 :param input_date: 用户选择的日期,格式为'YYYY-MM' :return: 预测销售额 """ model = LSTM() model.load_state_dict(torch.load(model_path)) model.eval() data = pd.read_csv('shuju.csv') data = data.set_index('Year-Month') # 将输入的日期转换为对应的行数 row_num = data.index.get_loc(input_date) x = data.iloc[row_num - 4:row_num + 1]['TotalPrice'].values x = scaler.transform(x.reshape(-1, 1)) x = torch.from_numpy(x).type(torch.Tensor) with torch.no_grad(): model.hidden = (torch.zeros(1, 1, model.hidden_layer_size), torch.zeros(1, 1, model.hidden_layer_size)) pred = model(x) pred = scaler.inverse_transform(pred.reshape(-1, 1)) return round(pred[0][0]) ``` app.py ```python from flask import Flask, render_template, request from suanfa import predict app = Flask(__name__) # 预测模型保存路径 model_path = 'model.pth' @app.route('/') def index(): return render_template('predict.html') @app.route('/predict', methods=['POST']) def predict_sales(): # 获取用户输入的日期 input_date = request.form['input_date'] # 调用预测函数得到预测结果 pred = predict(model_path, input_date) return render_template('predict.html', prediction=pred) ``` predict.html ```html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>销售额预测系统</title> <link rel="stylesheet" href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css"> <link rel="stylesheet" href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap-theme.min.css"> <link rel="stylesheet" href="https://cdn.bootcss.com/layer/2.3/skin/default/layer.css"> <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script> <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script> <script src="https://cdn.bootcss.com/layer/2.3/layer.js"></script> </head> <body> <div class="container"> <div class="page-header"> <h1>销售额预测系统</h1> </div> <div class="row"> <div class="col-md-6 col-md-offset-3"> <form class="form-inline" action="/predict" method="POST"> <div class="form-group"> <label for="input_date">日期:</label> <input type="month" class="form-control" id="input_date" name="input_date" required> </div> <button type="submit" class="btn btn-primary">预测</button> </form> {% if prediction %} <div class="alert alert-success" role="alert"> 预测结果:{{ prediction }} 元 </div> {% endif %} </div> </div> </div> </body> </html> ``` 在运行应用之前,需要在命令行中安装以下依赖: ```bash pip install Flask pandas numpy torch sklearn ``` 接下来,在命令行中输入以下命令启动应用: ```bash export FLASK_APP=app.py flask run ``` 然后在浏览器中访问 http://127.0.0.1:5000/ 即可使用销售额预测系统。

python操作resultym.csv数据表(有Date(YYYY/MM)、TotalPrice两列数据),数据表第一行为表头信息,数据表中前27行都有数据,以此为基础,python调用resultym.csv表进行操作:循环调用以resultym.csv为数据集构建的pytorch lstm预测模型(模型实现过程:先读取resultym.csv,然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback):将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4,然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数,定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型),该模型能够根据Date值来预测TotalPrice值,然后将第一次预测出的y_test_pred赋值给B26、将第二次预测出的值赋给B27、将第三次预测出的值赋给B28,一直循环直到求出B50的数值。每预测出一个值就在表的最后一行插入一组数据,插入的数据为:Date插入的值按照前面的年月往下延(即按照2023/03、2023/04、2023/05········2025/01的顺序),TotalPrice插入的值定义为2222222.5。直到求出第50行的数值,脚本停止运行。

以下是一个可能的实现过程,仅供参考: ```python import pandas as pd import numpy as np import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler # 定义模型 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTM, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): h0 = torch.zeros(1, input.size(1), self.hidden_size).to(input.device) c0 = torch.zeros(1, input.size(1), self.hidden_size).to(input.device) output, _ = self.lstm(input, (h0, c0)) output = self.fc(output[-1]) return output # 定义数据划分函数 def split_data(data, lookback): data_raw = data.to_numpy() scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data_raw) x = [] y = [] for i in range(len(data_scaled) - lookback): x.append(data_scaled[i:i + lookback]) y.append(data_scaled[i + lookback]) x = np.array(x) y = np.array(y) train_size = int(len(x) * 0.8) x_train = torch.from_numpy(x[:train_size, :, :]).type(torch.Tensor) y_train = torch.from_numpy(y[:train_size, :]).type(torch.Tensor) x_test = torch.from_numpy(x[train_size:, :, :]).type(torch.Tensor) y_test = torch.from_numpy(y[train_size:, :]).type(torch.Tensor) return x_train, y_train, x_test, y_test, scaler # 读取数据 data = pd.read_csv("resultym.csv") lookback = 4 total_price_col_idx = 1 output_size = 1 hidden_size = 16 device = torch.device("cpu") model = LSTM(lookback, hidden_size, output_size).to(device) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) num_epochs = 1000 # 预测并插入数据 for i in range(26, 50): # 划分数据集 x_train, y_train, x_test, y_test, scaler = split_data(data.iloc[:i, 1:], lookback) # 训练模型 for epoch in range(num_epochs): optimizer.zero_grad() y_train_pred = model(x_train.to(device)) loss = criterion(y_train_pred, y_train.to(device)) loss.backward() optimizer.step() # 预测测试集 x_test = x_test[-1:, :, :] y_test_pred = model(x_test.to(device)) y_test_pred = scaler.inverse_transform(y_test_pred.detach().numpy())[0][0] data.loc[i, "TotalPrice"] = y_test_pred data.loc[i+1] = [f"2023/{i+4:02d}", 2222222.5] # 输出结果 print(data) ``` 其中,模型训练和预测的过程与前面的实现类似,主要的区别在于每次预测完之后需要将预测结果插入数据表中,并且在插入时需要按照一定规则生成新的日期值。另外,由于每次预测时只需要使用前面的数据,因此可以每次只读取前面的部分数据进行训练和预测,避免了重复计算。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩