Pytorch的中心损失怎么使用,给一个具体的案例
时间: 2024-05-08 15:14:43 浏览: 108
PyTorch的中心损失可以用于增强特征表示学习。 以下是使用中心损失的一个例子:
```
import torch
import torch.nn as nn
import torch.optim as optim
class CustomLoss(nn.Module):
def __init__(self, num_classes, feat_dim, size_average=True):
super(CustomLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.size_average = size_average
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda()) # 初始化中心
def forward(self, inputs, targets):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim).
targets: ground truth labels with shape (num_classes).
"""
batch_size = inputs.size(0)
dif = inputs.unsqueeze(1) - self.centers.unsqueeze(0) # 计算 features 和 centers 之间的差异
l2_dists = torch.sqrt(torch.sum(torch.pow(dif, 2), 2)) # 计算每个 feature 与所有 center 之间的距离
classes = torch.arange(self.num_classes).long().cuda()
targets = targets.unsqueeze(1).expand(batch_size, self.num_classes)
masks = torch.eq(targets, classes.expand(batch_size, self.num_classes)) # 生成掩码
f_m = l2_dists * masks.float() # 过滤掩码内的距离
f_m=f_m.cuda()
loss = f_m.sum() / (self.size_average * batch_size) # 计算平均损失
return loss
# 定义模型
class Model(nn.Module):
def __init__(self, num_classes):
super(Model, self).__init__()
self.fc1 = nn.Linear(10, 100)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(100, num_classes)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# 定义优化器
model = Model(num_classes=10).cuda()
criterion_cls = nn.CrossEntropyLoss().cuda()
criterion_center = CustomLoss(num_classes=10, feat_dim=100).cuda()
optimizer = optim.SGD([{'params': model.parameters()}, {'params': criterion_center.parameters()}], lr=0.1, momentum=0.5)
# 训练模型
for i in range(100):
inputs = torch.randn(64, 10).cuda()
targets = torch.randint(0, 10, (64,)).cuda()
optimizer.zero_grad() # 梯度清零
outputs = model(inputs) # 前向传播
loss_cls = criterion_cls(outputs, targets) # 分类损失
loss_center = criterion_center(model.fc1.weight, targets) # 中心损失
loss = loss_cls + loss_center # 总损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
```
在此示例中,我们定义了一个自定义损失函数 `CustomLoss`,其中包含一个参数 `centres`,这些参数是特征中心,它们在每次反向传播时进行更新。我们还定义了一个模型 `Model`,它包含一个线性层和一个ReLU激活函数。在训练循环中,我们计算了分类损失和中心损失,并将它们相加作为总损失。我们使用 `torch.optim.SGD` 优化器进行参数更新。
阅读全文