def torch_gc(): if torch.cuda.is_available(): # with torch.cuda.device(DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect() elif torch.backends.mps.is_available(): try: from torch.mps import empty_cache empty_cache() except Exception as e: print(e) print("如果您使用的是 macOS 建议将 pytorch 版本升级至 2.0.0 或更高版本,以支持及时清理 torch 产生的内存占用。")
时间: 2024-04-27 13:22:18 浏览: 342
torch.cuda.is_available()返回False解决方案
5星 · 资源好评率100%
这段代码定义了一个名为`torch_gc()`的函数,用于在PyTorch中进行GPU内存管理。该函数首先判断当前是否可用CUDA(即是否有可用的GPU),如果有,则使用`torch.cuda.empty_cache()`清空GPU缓存,释放已占用的GPU内存,并使用`torch.cuda.ipc_collect()`执行GPU内存回收。如果当前不支持CUDA,但支持MPS,则使用`torch.mps.empty_cache()`清空缓存,释放已占用的内存。在macOS系统中,如果想要及时清理torch占用的内存,需要将PyTorch版本升级至2.0.0或更高版本。该函数的作用是在使用PyTorch进行深度学习训练过程中,及时释放已使用的GPU内存,避免因为内存占用过高导致程序崩溃或者性能下降的问题。
阅读全文