fp-growth算法python实现
时间: 2023-05-30 19:07:51 浏览: 324
以下是使用Python实现FP-growth算法的示例代码:
```python
class TreeNode:
def __init__(self, name, count, parent):
self.name = name
self.count = count
self.parent = parent
self.children = {}
self.next = None
def increment(self, count):
self.count += count
def display(self, ind=1):
print(' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.display(ind + 1)
def create_tree(dataset, min_support):
header_table = {}
for trans in dataset:
for item in trans:
header_table[item] = header_table.get(item, 0) + dataset[trans]
for k in list(header_table.keys()):
if header_table[k] < min_support:
del(header_table[k])
freq_item_set = set(header_table.keys())
if len(freq_item_set) == 0:
return None, None
for k in header_table:
header_table[k] = [header_table[k], None]
root = TreeNode('Null Set', 1, None)
for trans, count in dataset.items():
local_d = {}
for item in trans:
if item in freq_item_set:
local_d[item] = header_table[item][0]
if len(local_d) > 0:
ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda p: p[1], reverse=True)]
update_tree(ordered_items, root, header_table, count)
return root, header_table
def update_tree(items, in_tree, header_table, count):
if items[0] in in_tree.children:
in_tree.children[items[0]].increment(count)
else:
in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)
if header_table[items[0]][1] is None:
header_table[items[0]][1] = in_tree.children[items[0]]
else:
update_header(header_table[items[0]][1], in_tree.children[items[0]])
if len(items) > 1:
update_tree(items[1:], in_tree.children[items[0]], header_table, count)
def update_header(node_to_test, target_node):
while node_to_test.next is not None:
node_to_test = node_to_test.next
node_to_test.next = target_node
def ascend_tree(leaf_node, prefix_path):
if leaf_node.parent is not None:
prefix_path.append(leaf_node.name)
ascend_tree(leaf_node.parent, prefix_path)
def find_prefix_path(base_pat, header_table):
# first node in linked list
tree_node = header_table[base_pat][1]
cond_pats = {}
while tree_node is not None:
prefix_path = []
ascend_tree(tree_node, prefix_path)
if len(prefix_path) > 1:
cond_pats[tuple(prefix_path[1:])] = tree_node.count
tree_node = tree_node.next
return cond_pats
def mine_tree(in_tree, header_table, min_support, pre_fix, freq_item_list):
big_l = [v[0] for v in sorted(header_table.items(), key=lambda p: p[1][0])]
for base_pat in big_l:
new_freq_set = pre_fix.copy()
new_freq_set.add(base_pat)
freq_item_list.append(new_freq_set)
cond_patt_bases = find_prefix_path(base_pat, header_table)
my_cond_tree, my_head = create_tree(cond_patt_bases, min_support)
if my_head is not None:
mine_tree(my_cond_tree, my_head, min_support, new_freq_set, freq_item_list)
def load_dataset():
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
def create_init_set(dataset):
ret_dict = {}
for trans in dataset:
ret_dict[frozenset(trans)] = 1
return ret_dict
if __name__ == '__main__':
min_support = 2
dataset = load_dataset()
init_set = create_init_set(dataset)
fp_tree, header_table = create_tree(init_set, min_support)
freq_items = []
mine_tree(fp_tree, header_table, min_support, set([]), freq_items)
print(freq_items)
```
这个示例代码实现了FP-growth算法的主要功能,包括创建FP树、查找条件模式基和挖掘频繁项集。在使用时,只需将数据集和最小支持度作为输入参数传递给函数即可。
阅读全文