nn.Linear(8, 32), nn.ReLU(inplace=True), nn.Dropout(dropout) nn.Linear(32, 16),

时间: 2023-09-11 11:05:23 浏览: 83
RAR

输出n个数字的全排列(可重复)

star4星 · 用户满意度95%
### 回答1: 这段代码是一个简单的神经网络模型,它包含了两个线性层(nn.Linear),一个ReLU激活函数(nn.ReLU),以及一个Dropout层(nn.Dropout)。具体来说,这个模型的输入是一个大小为8的向量,第一个线性层将输入向量转换为一个大小为32的隐藏向量,然后通过ReLU激活函数进行非线性变换,接着通过Dropout层进行随机失活,最后通过第二个线性层将隐藏向量转换为一个大小为16的输出向量。这个模型的目的是学习从输入向量到输出向量的映射关系,以便在训练完成后能够对新的输入向量进行分类、回归或生成等任务。其中,Dropout层的作用是在训练过程中随机地将某些神经元设置为0,以避免过拟合现象的发生。 ### 回答2: nn.Linear(8, 32)表示一个线性层模块,将输入特征的维度从8维映射到32维。其中,8表示线性模块的输入特征数量,32表示线性模块的输出特征数量。 nn.ReLU(inplace=True)表示一个激活函数模块,将线性层的输出进行非线性映射,激活函数采用ReLU函数。其中,inplace=True表示将计算结果覆盖到输入张量中,节省了额外的内存空间。 nn.Dropout(dropout)表示一个随机失活模块,用于防止神经网络过拟合。其中,dropout是一个参数,表示失活的概率,该模块会随机地将输入张量中的部分元素置为0。 nn.Linear(32, 16)表示另一个线性层模块,将上一层的输出特征的维度从32维映射到16维。其中,32表示线性模块的输入特征数量,16表示线性模块的输出特征数量。 以上四个模块结合起来构成了一个神经网络模型。通过输入一个8维的特征向量,经过第一个线性层得到32维的特征向量,再经过ReLU激活函数进行非线性映射,之后进行随机失活操作,再经过第二个线性层得到16维的特征向量,最后输出16维的特征表示。这样的网络结构可以用于各种任务,如分类、回归等。 ### 回答3: nn.Linear(8, 32)表示创建了一个将输入维度为8的向量转换为输出维度为32的线性变换层。这个线性变换层可以通过矩阵乘法和加法操作来实现。 nn.ReLU(inplace=True)表示创建了一个ReLU(Rectified Linear Unit)激活函数层,并设置inplace=True,意味着在激活函数中直接覆盖输入张量而不是创建新的张量。ReLU函数的作用是将小于0的输入置为0,并保留大于等于0的输入。 nn.Dropout(dropout)表示创建了一个Dropout层,并设定了一个dropout参数。Dropout是一种正则化技术,可以用于减少模型过拟合。在训练过程中,Dropout会将一部分神经元的输出随机置为0,从而在每次迭代中减少某些神经元"过拟合"的风险。dropout参数指定了舍弃神经元的概率。 最后,nn.Linear(32, 16)创建了一个线性变换层,将输入维度为32的向量转换为输出维度为16的向量。这个线性变换层的原理与前一个类似,通过矩阵乘法和加法操作实现。 这样的神经网络模型通常被用于处理具有8维输入特征的数据,经过一系列的线性变换和非线性激活函数的操作后,输出一个16维的向量。其中的Dropout层可以帮助防止过拟合,提高模型的泛化能力。
阅读全文

相关推荐

你好,我用pytorch写了一个vgg16网络结构的代码,但是运行会报错:name 'self' is not defined。能帮我看看哪错了吗,原始代码如下:import torch import torchvision import torch.nn as nn class VGG16(nn.Module): def __init__(in_channels = 3,out_channels = 1000,num_hidden = 50288): super(VGG16, self).__init__() self.features = nn.Sequential( nn.Conv2d(in_channels,64,3,1,1), nn.ReLU(inplace=True), nn.Conv2d(64,64,3,1,1), nn.ReLU(inplace=True), nn.MaxPool2d(2,2), nn.Conv2d(64,128,3,1,1), nn.ReLU(inplace=True), nn.Conv2d(128,128,3,1,1), nn.ReLU(inplace=True), nn.MaxPool2d(2,2), nn.Conv2d(128, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(256, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(256, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), ) self.avgpool = nn.AdaptiveAvgPool2d(output_size=(7,7)) self.classifier = nn.Sequential( nn.Linear(num_hidden,4096), nn.ReLU(), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(), nn.Linear(4096,out_channels) ) def forward(self,x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x,1) x = self.classifer(x) return x vgg = VGG16() print(vgg(3,1000,50288))

def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.dropout=nn.Dropout(0.5) self.fc4 = nn.Linear(24, 48) self.fc5 = nn.Linear(48, 96) self.fc6 = nn.Linear(96, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.dropout(x) x = nn.functional.relu(x) x = self.fc4(x) x = nn.functional.relu(x) x = self.fc5(x) x = nn.functional.relu(x) x = self.fc6(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=0.05) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv') 如果我想要使用学习率调度器应该怎么操作

import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)

# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x

最新推荐

recommend-type

Spring Boot Starter-kit:含多种技术应用,如数据库、认证机制,有应用结构.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

包含 Spring Boot 等系列技术参考指南中文版及相关资源的仓库.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

Unity3d 3D模型描边代码 懒人直接上代码

Unity3d 3D模型描边代码 懒人直接上代码
recommend-type

java毕业设计-基于SSM的超市管理系统【代码+部署教程】

原文链接:https://alading.blog.csdn.net/article/details/141710476 包含功能: 经理管理:负责经理信息维护与权限分配,确保管理层操作的安全性和高效性。 员工管理:管理员工信息,包括招聘、离职、考勤及权限设置,优化人力资源配置。 商品分类管理:对商品进行科学分类,便于商品检索与管理,提升顾客购物体验。 商品信息管理:维护商品详细信息,如名称、价格、描述等,确保信息准确无误。 商品入库管理:监控商品入库流程,记录库存变化,实现库存精准管理。 商品销售管理:处理销售事务,包括销售记录、退货处理,支持销售业绩分析。 缺货提醒管理:自动检测库存水平,及时发出缺货警告,保障商品供应连续性。 商品收银管理:处理交易结算,支持多种支付方式,确保收银过程快速准确。 供应商管理:维护供应商信息,评估合作效果,优化供应链,保证商品质量与供应稳定性。
recommend-type

MATLAB实现工业PCB电路板缺陷识别和检测【图像处理实战】 - 副本 (2).zip

MATLAB实现工业PCB电路板缺陷识别和检测【图像处理实战】项目详情请参见:https://handsome-man.blog.csdn.net/article/details/130493170 PCB板检测的大概流程如下:首先存储一个标准PCB板图像作为良好板材的参考标准,然后将待检测的PCB板图像进行处理,比较与标准PCB图像的差异,根据差异的情况来判断缺陷类型。 项目代码可顺利编译运行~
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。