linear_fit = glm(y, x, family=families.Gaussian(link=families.links.identity)).fit()用OLS改编
时间: 2024-03-10 13:44:56 浏览: 111
GLM-Kalman-001.rar_GLM_Kalman filter_glm_glm matlab
如果要用OLS替换掉`glm`,可以使用`statsmodels`库中的`OLS`方法来拟合线性回归模型。具体代码如下:
```python
import statsmodels.api as sm
# 添加常数列
x = sm.add_constant(x)
# 拟合OLS模型
linear_fit = sm.OLS(y, x).fit()
# 去除常数列
x = x[:, 1:]
```
其中,`sm.add_constant(x)`表示为自变量矩阵`x`添加一列常数列,以便拟合截距项。接着,使用`OLS`方法拟合因变量`y`和自变量`x`之间的线性关系,得到一个拟合结果对象`linear_fit`。最后,可以使用`x[:, 1:]`去除自变量矩阵中的常数列,以便后续分析。
需要注意的是,`OLS`假设误差项在各个自变量取值上是独立且服从相同的方差的正态分布,因此只适用于响应变量服从高斯分布的情况。如果数据分布形式比较复杂,或者需要考虑非线性关系,那么使用`glm`方法会更加灵活和准确。
阅读全文