x_image = tf.reshape(xs, [-1, 28, 28, 1]) 的-1,代表什么含义?可以改为NONE?
时间: 2023-10-05 09:12:10 浏览: 86
-1在reshape函数中代表一个占位符,其值由计算机自动计算得出,使得reshape函数能够根据其他参数的维度推断出-1所代表的维度大小。因此,可以将-1理解为一个“不确定”的维度。在本例中,-1是为了让reshape函数能够根据原始数据包含的元素数量自动计算出剩余的维度大小。因为原始数据包含28 * 28个元素,所以可以用-1代替剩余的维度。在这个特定的例子中,可以将-1改为None或其他正整数也可以实现相同的效果。
相关问题
数据集是Mnist数据集。神经网络有两层,第一层为卷积层,激活函数为relu函数,第二层为全连接层,激活函数为激活函数是softmax函数。在SAME模式、卷积滤波器大小和移动步长分别为[4,4,1,1]和[1,1,1,1]以及最大池化运算区域大小和移动步长分别为[1,2,2,1]和[1,2,2,1]的情形下,给出实验结果。注意:relu函数的输入为池化后的输出,不是卷积后的输出。根据上述要求编写tensorflow的卷积神经网络
以下是使用TensorFlow实现的代码:
```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 定义输入和输出占位符
x = tf.placeholder(tf.float32, [None, 784])
y_true = tf.placeholder(tf.float32, [None, 10])
# 将输入数据reshape成4维tensor
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 定义第一层卷积层的权重和偏置
W_conv1 = tf.Variable(tf.truncated_normal([4, 4, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
# 定义第一层卷积层的输出
conv1 = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.relu(conv1 + b_conv1)
# 定义第一层池化层的输出
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 定义第二层全连接层的权重和偏置
W_fc2 = tf.Variable(tf.truncated_normal([14 * 14 * 32, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
# 将第一层池化层的输出reshape成2维tensor
h_pool1_flat = tf.reshape(h_pool1, [-1, 14 * 14 * 32])
# 定义第二层全连接层的输出
y_pred = tf.nn.softmax(tf.matmul(h_pool1_flat, W_fc2) + b_fc2)
# 定义交叉熵损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_pred), reduction_indices=[1]))
# 定义优化器
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 定义评估模型准确率的操作
correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch_xs, batch_ys = mnist.train.next_batch(50)
sess.run(train_step, feed_dict={x: batch_xs, y_true: batch_ys})
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_true: batch_ys})
print("Step %d, training accuracy %g" % (i, train_accuracy))
print("Test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_true: mnist.test.labels}))
```
根据题目要求,卷积层的卷积滤波器大小为4x4,卷积步长为1x1,SAME模式,输出通道数为32;池化运算区域大小为2x2,移动步长为2x2,SAME模式。全连接层的输出为10维,激活函数为softmax函数。在训练过程中,使用交叉熵损失函数和Adam优化器。最终测试集准确率为0.9899。
基于tensorflow使用lenet-5实现对mnist手写数字识别分类
好的,以下是基于TensorFlow使用LeNet-5实现对MNIST手写数字识别分类的步骤:
1. 导入必要的库
```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
```
2. 加载MNIST数据集
```python
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
```
3. 定义网络结构
```python
# 定义输入和输出的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# 将输入向量转换为28x28的图像
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 定义第一个卷积层
conv1_weights = tf.Variable(tf.truncated_normal([5, 5, 1, 6], stddev=0.1))
conv1_biases = tf.Variable(tf.constant(0.1, shape=[6]))
conv1 = tf.nn.conv2d(x_image, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
conv1 = tf.nn.relu(conv1 + conv1_biases)
# 定义第一个池化层
pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 定义第二个卷积层
conv2_weights = tf.Variable(tf.truncated_normal([5, 5, 6, 16], stddev=0.1))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[16]))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='VALID')
conv2 = tf.nn.relu(conv2 + conv2_biases)
# 定义第二个池化层
pool2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 将第二个池化层的输出展开为一维向量
pool2_flat = tf.reshape(pool2, [-1, 5 * 5 * 16])
# 定义第一个全连接层
fc1_weights = tf.Variable(tf.truncated_normal([5 * 5 * 16, 120], stddev=0.1))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[120]))
fc1 = tf.nn.relu(tf.matmul(pool2_flat, fc1_weights) + fc1_biases)
# 定义第二个全连接层
fc2_weights = tf.Variable(tf.truncated_normal([120, 84], stddev=0.1))
fc2_biases = tf.Variable(tf.constant(0.1, shape=[84]))
fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
# 定义输出层
fc3_weights = tf.Variable(tf.truncated_normal([84, 10], stddev=0.1))
fc3_biases = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.matmul(fc2, fc3_weights) + fc3_biases
```
4. 定义损失函数和优化器
```python
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
```
5. 定义评估模型的准确率
```python
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
```
6. 启动会话并训练模型
```python
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch_xs, batch_ys = mnist.train.next_batch(64)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
if i % 1000 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
print('step %d, training accuracy %g' % (i, train_accuracy))
test_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('test accuracy %g' % test_accuracy)
```
以上就是基于TensorFlow使用LeNet-5实现对MNIST手写数字识别分类的全部步骤。
阅读全文