plt.switch_backend

时间: 2023-04-29 15:00:38 浏览: 75
plt.switch_backend是一个matplotlib库中的函数,用于在不同的后端之间切换。后端是指用于绘图的底层库,例如TkAgg、Qt4Agg、GTK、WXAgg等。通过使用plt.switch_backend函数,可以在不同的后端之间切换,以便在不同的环境中进行绘图。
相关问题

plt.switch_backend('agg')

plt.switch_backend('agg') 的意思是切换 matplotlib 的后端为 agg,agg 是一种高质量的渲染引擎,可以生成高质量的图片。这个函数通常用于在服务器上生成图片,而不需要显示在屏幕上。

if isinstance(annotations[0], dict): annotations = [annotation['segmentation'] for annotation in annotations] image = self.ori_img image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) original_h = image.shape[0] original_w = image.shape[1] if sys.platform == "darwin": plt.switch_backend("TkAgg") plt.figure(figsize=(original_w / 100, original_h / 100)) # Add subplot with no margin. plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0)

这段代码的作用是将图像和标注数据可视化。首先,代码判断 `annotations[0]` 是否是字典类型。如果是字典类型,则将 `annotations` 列表中的每个字典中的 `'segmentation'` 键对应的值取出,并赋值给 `annotations` 列表,即将原始的标注数据转换为只包含分割信息的列表。 接下来,将 `self.ori_img` 赋值给 `image` 变量,并使用 `cv2.cvtColor()` 将图像从 BGR 格式转换为 RGB 格式。 然后,获取原始图像的高度和宽度,并保存在 `original_h` 和 `original_w` 变量中。 接下来,根据操作系统判断,如果当前运行环境是 macOS,则使用 `plt.switch_backend("TkAgg")` 设置 Matplotlib 的后端为 "TkAgg"。 然后,创建一个图像大小为 `(original_w / 100, original_h / 100)` 的图形窗口,通过调用 `plt.subplots_adjust()` 方法设置子图的边距为 0,调用 `plt.margins()` 方法设置子图的边界为 0。 这段代码最终实现了将图像和标注数据可视化的功能。

相关推荐

@app.route('/get_trip_time', methods=['POST']) def get_trip_time(): data = request.get_json() method = data['method'] center_coor = data['center_coor'] t = data['t'] radius = get_radius(method, t) gtt = GetTripTime(method, center_coor, t, radius) gtt.main() return jsonify({'message': 'Trip time data collected successfully'}) @app.route('/visualize_trip_time', methods=['GET']) def visualize_trip_time(): data = pd.read_csv('time1.csv') lng = data['lng'] lat = data['lat'] time = data['time'] grid_lng, grid_lat = np.meshgrid(np.linspace(lng.min(), lng.max(), 100), np.linspace(lat.min(), lat.max(), 100)) grid_time = griddata((lng, lat), time, (grid_lng, grid_lat), method='linear') fig, ax = plt.subplots(figsize=(8, 8)) contour_plot = ax.contourf(grid_lng, grid_lat, grid_time, cmap='jet', levels=6) ax.contour(contour_plot, colors='k', linewidths=0.5) plt.colorbar(contour_plot) last_lng = lng.iloc[-1] last_lat = lat.iloc[-1] ax.scatter(last_lng, last_lat, color='green', marker='o', s=50, label='Start Point') ax.legend() plt.title('Isochrone') ax.set_xlabel('Longitude') ax.set_ylabel('Latitude') ax.xaxis.set_major_formatter(mticker.FormatStrFormatter('%.2f')) plt.show() return jsonify({'message': 'Trip time visualization generated successfully'}) @app.route('/get_isochrone_coords', methods=['GET']) def get_isochrone_coords(): with open('contour_coords.json', 'r') as f: contour_coords = json.load(f) return jsonify(contour_coords)用rest client调用GET http://localhost:5000/visualize_trip_time时报错ValueError: signal only works in main thread of the main interpreter

Traceback (most recent call last): File "C:\Users\2022\Desktop\代码\EMDT\EMDT回测表现.py", line 716, in <module> Visualizor.show_perf_df_indis(perf_df_lst=[(evaluator2.perf_df, '带止损'),], File "C:\Users\2022\Desktop\代码\EMDT\EMDT回测表现.py", line 606, in show_perf_df_indis plt.figure(figsize=(12, 3 * indi_amt)) File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\_api\deprecation.py", line 454, in wrapper return func(*args, **kwargs) File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 840, in figure manager = new_figure_manager( File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 383, in new_figure_manager _warn_if_gui_out_of_main_thread() File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 361, in _warn_if_gui_out_of_main_thread if _get_required_interactive_framework(_get_backend_mod()): File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 208, in _get_backend_mod switch_backend(rcParams._get("backend")) File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 256, in switch_backend switch_backend(candidate) File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 356, in switch_backend install_repl_displayhook() File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib\pyplot.py", line 157, in install_repl_displayhook ip.enable_gui(ipython_gui_name) File "C:\Users\2022\AppData\Local\Programs\Python\Python39\lib\site-packages\IPython\core\interactiveshell.py", line 3562, in enable_gui raise NotImplementedError('Implement enable_gui in a subclass') NotImplementedError: Implement enable_gui in a subclass 进程已结束,退出代码1给出解决方法

Traceback (most recent call last): File "D:\PythonProject\数据分析\plot.py", line 39, in <module> dfgroup2.plot(kind="bar") File "D:\anaconda3\lib\site-packages\pandas\plotting\_core.py", line 1000, in __call__ return plot_backend.plot(data, kind=kind, **kwargs) File "D:\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\__init__.py", line 71, in plot plot_obj.generate() File "D:\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\core.py", line 451, in generate self._setup_subplots() File "D:\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\core.py", line 512, in _setup_subplots fig = self.plt.figure(figsize=self.figsize) File "D:\anaconda3\lib\site-packages\matplotlib\_api\deprecation.py", line 454, in wrapper return func(*args, **kwargs) File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 813, in figure manager = new_figure_manager( File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 382, in new_figure_manager _warn_if_gui_out_of_main_thread() File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 360, in _warn_if_gui_out_of_main_thread if _get_required_interactive_framework(_get_backend_mod()): File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 208, in _get_backend_mod switch_backend(rcParams._get("backend")) File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 331, in switch_backend manager_pyplot_show = vars(manager_class).get("pyplot_show") TypeError: vars() argument must have __dict__ attribute

最新推荐

recommend-type

基于 Java 实现的打砖块游戏【安卓传感器开发课程实验】

【作品名称】:基于 Java 实现的打砖块游戏【安卓传感器开发课程实验】 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:打砖块游戏,安卓传感器开发课程实验
recommend-type

HTML+CSS+JS+JQ+Bootstrap的服务信息展示响应式手机网页模板.7z

解锁网页开发秘籍,这套源码集成了HTML的结构力量、CSS的视觉魔法、JavaScript的交互智慧、jQuery的效率工具箱及Bootstrap的响应式盔甲。从基础搭建到动态交互,一步到位。 HTML筑基,强化网页骨络; CSS妆点,让设计灵动多彩; JavaScript驱动,实现页面互动; jQuery加持,简化操作,加速开发; Bootstrap响应,适配多端,无缝浏览。 无论你是编程新手还是高手,这份资源都能带你深入前端世界的核心,实践中学以致用,创造既美观又强大的网页作品。立刻行动,激发你的前端创造力!
recommend-type

基于springboot+vue开发房屋租赁管理系统boot--附毕业论文+源代码+sql(毕业设计).rar

本项目是一个基于Spring Boot和Vue的房屋租赁管理系统,专为计算机相关专业的学生设计,尤其适合那些正在进行毕业设计或寻求项目实战经验的Java学习者。项目提供了完整的源代码、数据库脚本以及详细的开发指南,同时附带了参考文献,使学生能够轻松地将此项目作为毕业设计的成果展示。 系统采用Spring Boot框架构建后端服务,实现了高效的资源管理和事务控制。前端则利用Vue.js框架,提供了直观易用的用户界面。数据库选用MySQL,确保了数据的安全性和稳定性。开发环境包括JDK、IntelliJ IDEA和Tomcat服务器,配置完善,便于开发者快速上手。 经过严格的测试,项目运行稳定可靠。对于有一定Java基础的学习者,还可以在此基础上进行扩展,实现更多个性化功能,满足不同的业务需求。本项目的成功实施,不仅能为学生提供一个高质量的毕业设计作品,同时也将为其未来的职业发展打下坚实的基础。
recommend-type

基于HTML+CSS+JS开发的网站-在线教育培训服务响应式网页模板.7z

解锁网页开发秘籍,这套源码集成了HTML的结构力量、CSS的视觉魔法、JavaScript的交互智慧、jQuery的效率工具箱及Bootstrap的响应式盔甲。从基础搭建到动态交互,一步到位。 HTML筑基,强化网页骨络; CSS妆点,让设计灵动多彩; JavaScript驱动,实现页面互动; jQuery加持,简化操作,加速开发; Bootstrap响应,适配多端,无缝浏览。 无论你是编程新手还是高手,这份资源都能带你深入前端世界的核心,实践中学以致用,创造既美观又强大的网页作品。立刻行动,激发你的前端创造力!
recommend-type

基于Java实现的安卓游戏-猜地鼠游戏

【作品名称】:基于Java实现的安卓游戏-猜地鼠游戏 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Java实现的安卓游戏-猜地鼠游戏
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。