residual block
时间: 2023-09-26 09:04:44 浏览: 56
Residual block是深度学习中的一种网络结构,它可以帮助提高模型的效率和准确率。它由一个子模块和一个残差连接组成,其中子模块可以是卷积层或其他可微分层,残差连接则是将输入特征图和子模块学习到的特征图在通道维度上进行相加。通过这种方式,网络可以学习到输入数据的残差信息,有助于减轻深度网络中的退化问题。
相关问题
inverted residual block
倒置残差块(inverted residual block)是一种在深度学习中常用的卷积神经网络模块。它是MobileNet V2中的一种模块,通过将传统的残差块进行倒置,使得网络在保持高效性的同时,能够更好地处理低维度的特征。倒置残差块的核心思想是通过先进行轻量级的卷积操作,再进行深度级别的卷积操作,从而减少计算量和参数数量,提高网络的效率。
Inverted Residual block
倒置残差块(Inverted Residual block)是一种主导移动网络结构设计的模块。它通过引入两个设计原则来改变经典的残差瓶颈结构,即学习倒置残差和使用线性瓶颈。这种设计改变的必要性是重新思考信息丢失和梯度混淆的风险。为了有效缓解这些问题,提出了一种新的瓶颈设计,称为sandglass block。这种设计在更高维度进行恒等映射和空间转换,以减少信息丢失和梯度混淆的影响,非常有效。在MobileNeXt中,使用了基于sandglass block的架构,堆叠了多个这样的模块。网络的输入是一个32维输出的卷积层,然后是堆叠的sandglass block,最后是全局平均池化层将二维特征图压缩为一维,并由全连接层输出每个类别的分数。<em>1</em><em>2</em><em>3</em>
#### 引用[.reference_title]
- *1* *2* [Rethinking Bottleneck Structure for Efficient Mobile Network Design](https://blog.csdn.net/goodenough5/article/details/129852613)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
- *3* [MobileNext:打破常规,依图逆向改造inverted residual block | ECCV 2020](https://blog.csdn.net/lichlee/article/details/125313988)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文