class ResidualBlock(Layer):

时间: 2023-12-13 16:04:24 浏览: 33
ResidualBlock 是一个继承自 Layer 的类,用于实现残差块。它通常用于深度神经网络中,可以有效地解决梯度消失和梯度爆炸等问题,从而提高模型的性能和训练速度。 在 ResidualBlock 中,通常包含两个或多个卷积层和一些批量归一化层、激活函数等。它的输入通过一个卷积层进行变换,然后经过一系列的中间层,最后再通过一个卷积层进行变换,最终输出。 同时,ResidualBlock 还引入了跳跃连接(skip connection)机制,即将输入直接与输出相加,从而保证了信息的流通和梯度的传播。这种机制可以有效地减缓梯度消失问题,并且能够让深度神经网络更加容易训练。
相关问题

class ResNetRGBD(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNetRGBD, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1

这是一个 PyTorch 中的 ResNetRGBD 模型类的定义,它继承自 nn.Module 类。在初始化函数 `__init__` 中,它接受以下参数: - `block`:ResNet 中残差块的类(比如 BasicBlock 或 Bottleneck)。 - `layers`:一个列表,表示每个残差块堆叠的数量。 - `num_classes`:输出类别的数量。 - `zero_init_residual`:是否使用零初始化残差块的权重。 - `groups`:分组卷积中的组数。 - `width_per_group`:每个组的通道数。 - `replace_stride_with_dilation`:是否使用空洞卷积代替步幅卷积来降低下采样率。 - `norm_layer`:归一化层的类型(比如 BatchNorm2d 或 GroupNorm)。 其中,`self._norm_layer` 表示使用的归一化层,`self.inplanes` 表示当前的通道数,`self.dilation` 表示当前的空洞率。

class ResNet(nn.Module):完整代码

以下是一个简单的 ResNet 实现的完整 Python 代码: ```python import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = nn.ReLU()(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self.make_layer(block, 64, layers[0], stride=1) self.layer2 = self.make_layer(block, 128, layers[1], stride=2) self.layer3 = self.make_layer(block, 256, layers[2], stride=2) self.layer4 = self.make_layer(block, 512, layers[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, out_channels, blocks, stride=1): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels for i in range(1, blocks): layers.append(block(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = nn.Flatten()(out) out = self.fc(out) return out ``` 这里实现了 ResNet18,但是根据需要,你可以调整块的数量来实现 ResNet34、ResNet50、ResNet101 和 ResNet152 等预训练模型。

相关推荐

详细解释一下这段代码:class ResnetBlock(Model): def init(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).init() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def init(self, block_list, initial_filters=64): super(ResNet18, self).init() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y

class Conv_ReLU_Block(nn.Module):#定义了ConvReLU()类,继承了nn.Module父类。 def __init__(self): super(Conv_ReLU_Block, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#定义了对象变量self.conv,属性是{nn.Conv2d()}对象,实际上self.conv是{nn.Conv2d()}类的实例化,实例化时需要参数。 self.relu = nn.ReLU(inplace=True) def forward(self, x):#定义了forward()方法,对输入进行操作 return self.relu(self.conv(x))#卷积和激活的一个框,下次可以直接调用 # x = self.conv(x)实际上为x = self.conv.forward(x),调用了nn.Conv2d()的forward()函数,由于大家都继承了nn.Module父类,根据nn.Module的使用方法,.forward()不写,直接写object(input) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)#调用Conv_ReLU_Block,重复18个Conv_ReLU_Block模块 self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#通道层放大 self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)#通道层缩小 self.relu = nn.ReLU(inplace=True)#19-22初始化网络层 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, sqrt(2. / n)) def make_layer(self, block, num_of_layer):#把Conv_ReLU_Block做一个循环,封装在 layers = [] for _ in range(num_of_layer): layers.append(block()) return nn.Sequential(*layers) def forward(self, x):#网络的整体的结构 residual = x out = self.relu(self.input(x))#增加通道数 out = self.residual_layer(out)#通过18层 out = self.output(out)#输出,降通道数 out = torch.add(out, residual)#做了一个残差连接 return out

代码解析: class BasicBlock(nn.Layer): expansion = 1 def init(self, in_channels, channels, stride=1, downsample=None): super().init() self.conv1 = conv1x1(in_channels, channels) self.bn1 = nn.BatchNorm2D(channels) self.relu = nn.ReLU() self.conv2 = conv3x3(channels, channels, stride) self.bn2 = nn.BatchNorm2D(channels) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet45(nn.Layer): def init(self, in_channels=3, block=BasicBlock, layers=[3, 4, 6, 6, 3], strides=[2, 1, 2, 1, 1]): self.inplanes = 32 super(ResNet45, self).init() self.conv1 = nn.Conv2D( in_channels, 32, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn1 = nn.BatchNorm2D(32) self.relu = nn.ReLU() self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) self.out_channels = 512 def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # downsample = True downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) return x

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

最新推荐

recommend-type

“人力资源+大数据+薪酬报告+涨薪调薪”

人力资源+大数据+薪酬报告+涨薪调薪,在学习、工作生活中,越来越多的事务都会使用到报告,通常情况下,报告的内容含量大、篇幅较长。那么什么样的薪酬报告才是有效的呢?以下是小编精心整理的调薪申请报告,欢迎大家分享。相信老板看到这样的报告,一定会考虑涨薪的哦。
recommend-type

springboot+vue小区物业管理系统(源码+文档)

系统包括业主登录、管理员登录2部分,登录者身份不同,其管理权限也不一样。业主只能查询,而管理员则可以增删改查各个部分。业主部分主要包括报修信息管理,缴欠费信息查询,房屋信息查询以及业主信息查询这4个模块;管理员部分主要包括用户权限管理,报修信息管理,缴欠费信息管理,房屋信息管理以及业主信息管理 5个模块。
recommend-type

工业AI视觉检测解决方案.pptx

工业AI视觉检测解决方案.pptx是一个关于人工智能在工业领域的具体应用,特别是针对视觉检测的深入探讨。该报告首先回顾了人工智能的发展历程,从起步阶段的人工智能任务失败,到专家系统的兴起到深度学习和大数据的推动,展示了人工智能从理论研究到实际应用的逐步成熟过程。 1. 市场背景: - 人工智能经历了从计算智能(基于规则和符号推理)到感知智能(通过传感器收集数据)再到认知智能(理解复杂情境)的发展。《中国制造2025》政策强调了智能制造的重要性,指出新一代信息技术与制造技术的融合是关键,而机器视觉因其精度和效率的优势,在智能制造中扮演着核心角色。 - 随着中国老龄化问题加剧和劳动力成本上升,以及制造业转型升级的需求,机器视觉在汽车、食品饮料、医药等行业的渗透率有望提升。 2. 行业分布与应用: - 国内市场中,电子行业是机器视觉的主要应用领域,而汽车、食品饮料等其他行业的渗透率仍有增长空间。海外市场则以汽车和电子行业为主。 - 然而,实际的工业制造环境中,由于产品种类繁多、生产线场景各异、生产周期不一,以及标准化和个性化需求的矛盾,工业AI视觉检测的落地面临挑战。缺乏统一的标准和模型定义,使得定制化的解决方案成为必要。 3. 工业化前提条件: - 要实现工业AI视觉的广泛应用,必须克服标准缺失、场景多样性、设备技术不统一等问题。理想情况下,应有明确的需求定义、稳定的场景设置、统一的检测标准和安装方式,但现实中这些条件往往难以满足,需要通过技术创新来适应不断变化的需求。 4. 行业案例分析: - 如金属制造业、汽车制造业、PCB制造业和消费电子等行业,每个行业的检测需求和设备技术选择都有所不同,因此,解决方案需要具备跨行业的灵活性,同时兼顾个性化需求。 总结来说,工业AI视觉检测解决方案.pptx着重于阐述了人工智能如何在工业制造中找到应用场景,面临的挑战,以及如何通过标准化和技术创新来推进其在实际生产中的落地。理解这个解决方案,企业可以更好地规划AI投入,优化生产流程,提升产品质量和效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL运维最佳实践:经验总结与建议

![MySQL运维最佳实践:经验总结与建议](https://ucc.alicdn.com/pic/developer-ecology/2eb1709bbb6545aa8ffb3c9d655d9a0d.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MySQL运维基础** MySQL运维是一项复杂而重要的任务,需要深入了解数据库技术和最佳实践。本章将介绍MySQL运维的基础知识,包括: - **MySQL架构和组件:**了解MySQL的架构和主要组件,包括服务器、客户端和存储引擎。 - **MySQL安装和配置:**涵盖MySQL的安装过
recommend-type

stata面板数据画图

Stata是一个统计分析软件,可以用来进行数据分析、数据可视化等工作。在Stata中,面板数据是一种特殊类型的数据,它包含了多个时间段和多个个体的数据。面板数据画图可以用来展示数据的趋势和变化,同时也可以用来比较不同个体之间的差异。 在Stata中,面板数据画图有很多种方法。以下是其中一些常见的方法
recommend-type

智慧医院信息化建设规划及愿景解决方案.pptx

"智慧医院信息化建设规划及愿景解决方案.pptx" 在当今信息化时代,智慧医院的建设已经成为提升医疗服务质量和效率的重要途径。本方案旨在探讨智慧医院信息化建设的背景、规划与愿景,以满足"健康中国2030"的战略目标。其中,"健康中国2030"规划纲要强调了人民健康的重要性,提出了一系列举措,如普及健康生活、优化健康服务、完善健康保障等,旨在打造以人民健康为中心的卫生与健康工作体系。 在建设背景方面,智慧医院的发展受到诸如分级诊疗制度、家庭医生签约服务、慢性病防治和远程医疗服务等政策的驱动。分级诊疗政策旨在优化医疗资源配置,提高基层医疗服务能力,通过家庭医生签约服务,确保每个家庭都能获得及时有效的医疗服务。同时,慢性病防治体系的建立和远程医疗服务的推广,有助于减少疾病发生,实现疾病的早诊早治。 在规划与愿景部分,智慧医院的信息化建设包括构建完善的电子健康档案系统、健康卡服务、远程医疗平台以及优化的分级诊疗流程。电子健康档案将记录每位居民的动态健康状况,便于医生进行个性化诊疗;健康卡则集成了各类医疗服务功能,方便患者就医;远程医疗技术可以跨越地域限制,使优质医疗资源下沉到基层;分级诊疗制度通过优化医疗结构,使得患者能在合适的层级医疗机构得到恰当的治疗。 在建设内容与预算方面,可能涉及硬件设施升级(如医疗设备智能化)、软件系统开发(如电子病历系统、预约挂号平台)、网络基础设施建设(如高速互联网接入)、数据安全与隐私保护措施、人员培训与技术支持等多个方面。预算应考虑项目周期、技术复杂性、维护成本等因素,以确保项目的可持续性和效益最大化。 此外,"互联网+医疗健康"的政策支持鼓励创新,智慧医院信息化建设还需要结合移动互联网、大数据、人工智能等先进技术,提升医疗服务的便捷性和精准度。例如,利用AI辅助诊断、物联网技术监控患者健康状态、区块链技术保障医疗数据的安全共享等。 智慧医院信息化建设是一项系统工程,需要政府、医疗机构、技术供应商和社会各方共同参与,以实现医疗服务质量的提升、医疗资源的优化配置,以及全民健康水平的提高。在2023年的背景下,这一进程将进一步加速,为我国的医疗健康事业带来深远影响。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MySQL监控与预警:故障预防与快速响应

![MySQL监控与预警:故障预防与快速响应](https://www.tingyun.com/wp-content/uploads/2024/01/%E5%9F%BA%E8%B0%831-6.png) # 1. MySQL监控概述** MySQL监控是确保数据库系统稳定、高效运行的关键实践。通过监控,DBA可以及时发现并解决性能瓶颈、故障隐患,从而保障业务的正常运行。 MySQL监控涵盖了对系统、数据库和SQL层面的全面监控。它包括收集和分析各种性能指标,如CPU利用率、内存使用率、查询执行时间等,以了解数据库的运行状况。通过监控,DBA可以及时发现性能下降、资源瓶颈和异常行为,并采取措
recommend-type

C语言MAKEU32函数

C语言中的MAKEU32函数用于将4个8位的字节转换为一个32位的无符号整数。该函数通常被用于网络编程、位操作等领域。 MAKEU32函数的实现方式如下: ```c unsigned int MAKEU32(unsigned char a, unsigned char b, unsigned char c, unsigned char d) { return ((unsigned int)a << 24) | ((unsigned int)b << 16) | ((unsigned int)c << 8) | (unsigned int)d; } ``` 该函数接收4个8位的字节