这个文件有解决问题的思路和结果,我需要你通过这个思路和结果帮我给出每个步骤的程序设计代码
时间: 2024-12-15 12:21:16 浏览: 2
根据您提供的《2023114443-李明轩-课程设计.docx》中的内容,我可以为您总结每个步骤的程序设计代码。以下是基于MATLAB的实现:
### 1. 初始化数据
首先,我们需要初始化已知点的坐标和观测数据。
```matlab
% 已知点坐标
known_points = [
53743.136, 61003.826; % A
47943.002, 66225.854; % B
40049.229, 53782.790; % C
36924.728, 61027.086 % D
];
% 观测数据
observations = [
5760.706;
5187.342;
7838.880;
5483.158;
5731.788;
8720.162;
5598.570;
7494.881;
7493.323;
5438.382;
5487.073;
8884.587;
7228.367
];
```
### 2. 计算近似值
接下来,我们计算待定点的近似坐标。
```matlab
% 待定点的初始近似坐标(假设)
approximate_points = [
50000, 60000; % P1
45000, 55000; % P2
40000, 60000; % P3
35000, 55000 % P4
];
```
### 3. 建立误差方程
根据已知点和近似点坐标,计算误差方程的系数矩阵 \(A\) 和常数向量 \(l\)。
```matlab
function [A, l] = build_error_equations(known_points, approximate_points, observations)
n_known = size(known_points, 1);
n_approx = size(approximate_points, 1);
n_observations = length(observations);
A = zeros(n_observations, 2 * n_approx);
l = -observations;
for i = 1:n_observations
if i <= n_known
point1 = known_points(i, :);
point2 = approximate_points(mod(i-1, n_approx) + 1, :);
else
point1 = approximate_points(mod(i-1, n_approx) + 1, :);
point2 = approximate_points(mod(i-1, n_approx) + 2, :);
end
dx = point2(1) - point1(1);
dy = point2(2) - point1(2);
d = sqrt(dx^2 + dy^2);
A(i, mod(i-1, n_approx)*2 + 1) = dx / d;
A(i, mod(i-1, n_approx)*2 + 2) = dy / d;
end
end
[A, l] = build_error_equations(known_points, approximate_points, observations);
```
### 4. 计算观测值的权
根据测距精度公式计算每条边的权重。
```matlab
% 测距精度公式
sigma = 1; % 假设测距精度为1mm
weights = 1 ./ (sigma.^2 * observations.^2);
W = diag(weights);
```
### 5. 组成法方程并解算
使用最小二乘法解算法方程。
```matlab
N = A' * W * A;
t = A' * W * l;
delta_x = N \ t;
% 更新待定点坐标
for i = 1:size(approximate_points, 1)
approximate_points(i, :) = approximate_points(i, :) + delta_x(2*i-1:2*i)';
end
```
### 6. 精度计算
计算单位权中误差和待定点坐标中误差。
```matlab
v = A * delta_x - l;
unit_weight_std = sqrt((v' * W * v) / (size(A, 1) - size(N, 1)));
% 计算待定点坐标中误差
Qxx = inv(N);
point_std = sqrt(diag(Qxx));
```
### 7. 输出结果
最后,输出计算结果。
```matlab
disp('待定点坐标平差值:');
disp(approximate_points);
disp('待定点坐标中误差:');
disp(point_std);
disp('单位权中误差:');
disp(unit_weight_std);
```
### 完整代码
将上述所有部分组合在一起,形成完整的MATLAB脚本。
```matlab
% 已知点坐标
known_points = [
53743.136, 61003.826; % A
47943.002, 66225.854; % B
40049.229, 53782.790; % C
36924.728, 61027.086 % D
];
% 观测数据
observations = [
5760.706;
5187.342;
7838.880;
5483.158;
5731.788;
8720.162;
5598.570;
7494.881;
7493.323;
5438.382;
5487.073;
8884.587;
7228.367
];
% 待定点的初始近似坐标(假设)
approximate_points = [
50000, 60000; % P1
45000, 55000; % P2
40000, 60000; % P3
35000, 55000 % P4
];
% 建立误差方程
function [A, l] = build_error_equations(known_points, approximate_points, observations)
n_known = size(known_points, 1);
n_approx = size(approximate_points, 1);
n_observations = length(observations);
A = zeros(n_observations, 2 * n_approx);
l = -observations;
for i = 1:n_observations
if i <= n_known
point1 = known_points(i, :);
point2 = approximate_points(mod(i-1, n_approx) + 1, :);
else
point1 = approximate_points(mod(i-1, n_approx) + 1, :);
point2 = approximate_points(mod(i-1, n_approx) + 2, :);
end
dx = point2(1) - point1(1);
dy = point2(2) - point1(2);
d = sqrt(dx^2 + dy^2);
A(i, mod(i-1, n_approx)*2 + 1) = dx / d;
A(i, mod(i-1, n_approx)*2 + 2) = dy / d;
end
end
[A, l] = build_error_equations(known_points, approximate_points, observations);
% 计算观测值的权
sigma = 1; % 假设测距精度为1mm
weights = 1 ./ (sigma.^2 * observations.^2);
W = diag(weights);
% 组成法方程并解算
N = A' * W * A;
t = A' * W * l;
delta_x = N \ t;
% 更新待定点坐标
for i = 1:size(approximate_points, 1)
approximate_points(i, :) = approximate_points(i, :) + delta_x(2*i-1:2*i)';
end
% 精度计算
v = A * delta_x - l;
unit_weight_std = sqrt((v' * W * v) / (size(A, 1) - size(N, 1)));
% 计算待定点坐标中误差
Qxx = inv(N);
point_std = sqrt(diag(Qxx));
% 输出结果
disp('待定点坐标平差值:');
disp(approximate_points);
disp('待定点坐标中误差:');
disp(point_std);
disp('单位权中误差:');
disp(unit_weight_std);
```
以上代码实现了从初始化数据到最终结果输出的完整流程。您可以将其复制到MATLAB中运行,并根据实际情况调整初始近似坐标和其他参数。
阅读全文