C++ OpenCV中CLAHE算法能否根据图像情况进行直方图均衡化,写出代码。
时间: 2024-04-12 18:27:53 浏览: 316
是的,OpenCV的CLAHE(Contrast Limited Adaptive Histogram Equalization)算法可以根据图像的情况进行直方图均衡化。CLAHE算法可以自适应地对不同区域的图像进行直方图均衡化,以避免过度增强和细节丢失的问题。
下面是一个示例代码,展示如何在C++中使用OpenCV进行CLAHE算法的自适应直方图均衡化:
```cpp
#include <opencv2/opencv.hpp>
cv::Mat clahe_equalize(cv::Mat& src, double clipLimit, cv::Size grid_size)
{
cv::Mat ycrcb;
cv::cvtColor(src, ycrcb, cv::COLOR_BGR2YCrCb);
std::vector<cv::Mat> channels;
cv::split(ycrcb, channels);
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE();
clahe->setClipLimit(clipLimit);
clahe->setTilesGridSize(grid_size);
cv::Mat clahe_img;
clahe->apply(channels[0], clahe_img);
clahe_img.copyTo(channels[0]);
cv::merge(channels, ycrcb);
cv::Mat result;
cv::cvtColor(ycrcb, result, cv::COLOR_YCrCb2BGR);
return result;
}
int main()
{
// 读取图像
cv::Mat image = cv::imread("path_to_image.jpg");
// 设置CLAHE参数
double clipLimit = 4.0;
cv::Size grid_size(8, 8);
// 应用CLAHE算法进行直方图均衡化
cv::Mat result = clahe_equalize(image, clipLimit, grid_size);
// 显示原始图像和处理后的图像
cv::imshow("Original Image", image);
cv::imshow("CLAHE Equalized Image", result);
cv::waitKey(0);
return 0;
}
```
在这个示例中,`clahe_equalize`函数接受原始图像、剪切限制参数(`clipLimit`)和网格大小参数(`grid_size`),并返回经过CLAHE算法处理后的图像。
在`main`函数中,首先读取一张图像。然后,设置CLAHE算法的参数,包括剪切限制和网格大小。接下来,调用`clahe_equalize`函数对图像进行CLAHE直方图均衡化,并将结果保存在`result`变量中。最后,使用OpenCV的`imshow`函数显示原始图像和处理后的图像,并等待用户按下任意键关闭窗口。
你可以根据实际需求调整剪切限制和网格大小参数,以获得最佳的直方图均衡化效果。
阅读全文