yolov5目标检测过程原理
时间: 2023-09-29 13:10:41 浏览: 122
yolov5利用深度相机进行目标检测
5星 · 资源好评率100%
Yolov5目标检测过程的原理可以简述为以下几个步骤:
1. 使用图像预处理技术对输入图像进行处理,将其转换为模型可接受的数据格式。
2. 将处理后的图像送入深度神经网络模型中,在特征提取层对图像进行特征提取。
3. 在模型的最后一层,使用卷积层生成候选框,每个候选框表示可能包含物体的区域。
4. 在候选框中,使用类别预测网络对每个框内的物体进行分类,确定它们属于哪个目标类别。
5. 同时,使用回归网络对每个框的位置进行调整,以提高其精确性。
6. 最终,通过应用非极大值抑制算法,对重叠的候选框进行筛选,仅保留最佳结果。
这些步骤组合起来构成了Yolov5目标检测的核心部分,可以用于自动识别图像中出现的各种不同物体。
阅读全文