谐波小波包8层分解与重构python代码
时间: 2024-03-13 19:42:54 浏览: 111
以下是谐波小波包8层分解与重构Python代码的示例:
```python
import numpy as np
import pywt
# 设置参数
N = 1024 # 信号长度
wavelet = pywt.Wavelet('db4') # 小波基名称
level = 8 # 分解层数
alpha = 0.5 # 小波包阈值系数
# 生成信号
t = np.linspace(0,1,N)
x = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t) + np.sin(2*np.pi*30*t)
# 谐波小波包分解
wp = pywt.WaveletPacket(data=x, wavelet=wavelet, mode='symmetric', maxlevel=level)
nodes = ['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']
for node in nodes:
if wp[node].level == level:
wp[node].data.fill(0)
# 计算小波包系数的能量
E = np.sum(np.square(wp.get_leaf_nodes(True, False, True)))
# 阈值处理
T = alpha * E
for node in wp.get_leaf_nodes(True, False, True):
if np.abs(node.data) < T:
node.data.fill(0)
# 谐波小波包重构
y = wp.reconstruct(update=False)
# 绘图
import matplotlib.pyplot as plt
plt.subplot(2,1,1)
plt.plot(t, x)
plt.title('原始信号')
plt.xlabel('时间')
plt.ylabel('幅值')
plt.subplot(2,1,2)
plt.plot(t, y)
plt.title('重构信号')
plt.xlabel('时间')
plt.ylabel('幅值')
plt.show()
```
注意:这里使用的是谐波小波包,与小波包不同。如果您需要小波包分解与重构的代码,请在评论中提供更多细节信息。
阅读全文