python hog特征提取

时间: 2023-08-21 18:17:11 浏览: 40
### 回答1: HOG(Histogram of Oriented Gradients)是一种计算机视觉中的特征提取算法,常用于目标检测和行人识别等任务中。在Python中,可以使用OpenCV或scikit-image等库来实现HOG特征提取。 以scikit-image为例,可以通过以下代码实现HOG特征提取: ``` from skimage.feature import hog from skimage import data, exposure # 读取图像 image = data.astronaut() # 计算HOG特征 fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualize=True, multichannel=True) # 对HOG特征进行可视化 hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10)) # 显示原始图像和HOG特征图像 import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True) ax1.axis('off') ax1.imshow(image, cmap=plt.cm.gray) ax1.set_title('Input image') hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10)) ax2.axis('off') ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray) ax2.set_title('Histogram of Oriented Gradients') plt.show() ``` 其中,`image`代表输入的图像,`orientations`指定方向的个数,`pixels_per_cell`指定每个细胞的像素数,`cells_per_block`指定每个块包含的细胞数。`fd`表示提取得到的HOG特征向量,`hog_image`表示HOG特征图像。最后,使用`matplotlib`库进行可视化,显示原始图像和HOG特征图像。 ### 回答2: HOG(Histogram of Oriented Gradients)特征提取是一种用于计算图像特征的方法,最初是由Navneet Dalal和Bill Triggs在2005年提出的。它在计算机视觉领域被广泛应用于物体检测和图像分类任务。 HOG特征提取的过程可以分为以下几个步骤: 1. 归一化图像大小:为了保持计算效率,首先需要将图像缩放为固定的大小。通常,使用缩放后的图像尺寸在64x128到128x256之间。 2. 计算梯度:对于每个像素,通过计算其在水平和垂直方向上的梯度,确定其梯度的大小和方向。这些梯度用于描述图像的边缘和纹理信息。 3. 划分图像为小单元:将缩放后的图像划分为一系列重叠的小单元。每个小单元通常为8x8像素。 4. 创建梯度方向直方图:对于每个小单元,根据其中像素的梯度方向和大小,创建梯度方向直方图。一个直方图通常包含9个方向的梯度值。 5. 归一化块:将相邻的若干小单元组合成块,并对每个块内的直方图进行归一化处理。这有助于提高特征的鲁棒性和可区分性。 6. 拼接特征向量:将所有块的特征向量拼接在一起,形成最终的HOG特征向量。 HOG特征提取通过描述图像中梯度的方向信息来提取特征,而不是关注像素的具体值。这使得HOG特征对于光照变化和几何变换相对不敏感,具有较好的鲁棒性。在图像处理和计算机视觉任务中,HOG特征已被广泛应用于人体检测、行人检测、物体识别等领域。 ### 回答3: HOG(方向梯度直方图)是一种计算机视觉领域常用的特征提取算法,它用于对图像进行描述和识别。Python中有各种库和模块可以用来实现HOG特征提取。 HOG特征提取的步骤如下: 1. 图像预处理:将图像转化为灰度图,如果图像尺寸较大,还可以进行降采样。 2. 计算图像的梯度:使用Sobel等算子计算图像在水平和竖直方向上的梯度。计算梯度的目的是为了检测图像中的边缘和纹理。 3. 划分图像为小的块(cells):将图像分割为大小固定的小块,每个小块包含多个像素。 4. 计算每个小块的梯度直方图:对于每个小块,统计其内像素的梯度方向和强度,并将其组织成直方图。 5. 归一化梯度直方图:对于每个小块的梯度直方图,可以对其进行归一化,使得特征对光照等变化更加不敏感。 6. 将小块的特征组合成一个全局的特征向量:将所有小块的特征向量进行串联,形成一个用于描述整个图像的全局特征向量。 通过以上步骤,我们可以得到一个用于描述图像的HOG特征向量。这个特征向量可以用于识别和分类任务,比如行人检测、物体识别等。 在Python中,我们可以使用第三方库如OpenCV或scikit-image来实现HOG特征提取。这些库提供了方便的函数和方法,可以直接使用。 例如,使用OpenCV库,我们可以使用以下代码来实现HOG特征提取: ```python import cv2 def hog_feature_extraction(image): # 图像预处理 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 创建HOG对象 hog = cv2.HOGDescriptor() # 计算HOG特征向量 features = hog.compute(gray) return features ``` 上述代码中,我们首先将彩色图像转换为灰度图像,然后创建一个HOG对象,并使用`compute`函数计算图像的HOG特征向量。 总结来说,Python中可以使用第三方库实现HOG特征提取,该特征提取方法可以用于图像描述和识别任务,具有良好的性能和鲁棒性。

相关推荐

可以,以下是一个Python实现HOG特征提取的代码示例: python import cv2 import numpy as np # 读取图片 img = cv2.imread('your_image_file.jpg') # 将图片转为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 计算图像梯度 gx = cv2.Sobel(gray, cv2.CV_32F, 1, 0) gy = cv2.Sobel(gray, cv2.CV_32F, 0, 1) # 计算梯度幅值和方向 mag, angle = cv2.cartToPolar(gx, gy, angleInDegrees=True) # 将方向范围从0~360度改为0~180度 angle = angle % 180 # 将图像分成若干个块,每个块9个直方图bin,计算直方图 cell_size = (8, 8) block_size = (2, 2) nbins = 9 # 计算每个块的梯度直方图 hog = cv2.HOGDescriptor(_winSize=(gray.shape[1] // cell_size[1] * cell_size[1], gray.shape[0] // cell_size[0] * cell_size[0]), _blockSize=(block_size[1] * cell_size[1], block_size[0] * cell_size[0]), _blockStride=(cell_size[1], cell_size[0]), _cellSize=(cell_size[1], cell_size[0]), _nbins=nbins) hist = hog.compute(mag, winStride=(cell_size[1], cell_size[0]), padding=(0, 0)) # 将直方图展开为特征向量 features = np.array(hist).reshape(-1) 这段代码通过opencv库实现了HOG特征提取,具体实现过程如下: 1. 读取图像并将其转换为灰度图; 2. 计算图像的梯度,包括x和y方向的梯度; 3. 计算梯度幅值和方向,并将方向范围从0~360度改为0~180度; 4. 将图像分成若干个块,并计算每个块的梯度直方图; 5. 将直方图展开为特征向量。 这段代码可以用于目标检测、行人识别、人脸识别等计算机视觉任务中。
HOG(Histogram of Oriented Gradients)是一种用于图像特征提取的算法。它通过计算图像中各个像素点的梯度方向和梯度强度,进而生成一个描述图像纹理特征的直方图。 HOG算法主要包含以下几个步骤: 1. 图像预处理:首先,将彩色图像转换为灰度图像,以简化计算。然后对图像进行归一化处理,使得图像灰度值范围在0到255之间。 2. 计算梯度:对预处理后的图像进行梯度计算。通过使用一维卷积核,可以计算图像中每个像素点的梯度方向和梯度强度。梯度方向表示了像素点从亮到暗变化的方向,梯度强度表示了像素点的变化幅度。 3. 划分cell:将图像划分为多个大小相同的cell,每个cell中包含一定数量的像素点。划分cell的目的是为了进一步提取局部的特征。 4. 构建直方图:对每个cell中的像素点进行进一步处理,将其按照梯度方向分配到相应的方向区间中。然后统计每个区间的像素点数量,生成一个描述该cell特征的直方图。 5. 归一化:为了进一步提取全局特征,并使特征具有一定的不变性,对整个图像的所有cell的直方图进行归一化处理。常用的归一化方法有L1和L2范数归一化。 6. 特征拼接和分类器训练:将所有图像的HOG特征串联起来,形成一个特征向量。这个特征向量可以作为目标检测和分类的输入。通常,还需要使用机器学习算法训练一个分类器,以便根据HOG特征进行目标的识别和检测。 总的来说,Python中的HOG算法是基于图像梯度信息进行特征提取的一种方法。它可以应用于目标检测、行人检测、人脸识别等领域,在计算机视觉和机器学习中具有广泛的应用。

最新推荐

建材建筑专题报告瓷砖胶奔赴一场千亿盛宴-20页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

家用电器行业简评抖音渠道个护小电销售向好-2页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

01-Django项目美多商城

01-Django项目美多商城

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

ELECTRA风格跨语言语言模型XLM-E预训练及性能优化

+v:mala2277获取更多论文×XLM-E:通过ELECTRA进行跨语言语言模型预训练ZewenChi,ShaohanHuangg,LiDong,ShumingMaSaksham Singhal,Payal Bajaj,XiaSong,Furu WeiMicrosoft Corporationhttps://github.com/microsoft/unilm摘要在本文中,我们介绍了ELECTRA风格的任务(克拉克等人。,2020b)到跨语言语言模型预训练。具体来说,我们提出了两个预训练任务,即多语言替换标记检测和翻译替换标记检测。此外,我们预训练模型,命名为XLM-E,在多语言和平行语料库。我们的模型在各种跨语言理解任务上的性能优于基线模型,并且计算成本更低。此外,分析表明,XLM-E倾向于获得更好的跨语言迁移性。76.676.476.276.075.875.675.475.275.0XLM-E(125K)加速130倍XLM-R+TLM(1.5M)XLM-R+TLM(1.2M)InfoXLMXLM-R+TLM(0.9M)XLM-E(90K)XLM-AlignXLM-R+TLM(0.6M)XLM-R+TLM(0.3M)XLM-E(45K)XLM-R0 20 40 60 80 100 120触发器(1e20)1介绍使�

docker持续集成的意义

Docker持续集成的意义在于可以通过自动化构建、测试和部署的方式,快速地将应用程序交付到生产环境中。Docker容器可以在任何环境中运行,因此可以确保在开发、测试和生产环境中使用相同的容器镜像,从而避免了由于环境差异导致的问题。此外,Docker还可以帮助开发人员更快地构建和测试应用程序,从而提高了开发效率。最后,Docker还可以帮助运维人员更轻松地管理和部署应用程序,从而降低了维护成本。 举个例子,假设你正在开发一个Web应用程序,并使用Docker进行持续集成。你可以使用Dockerfile定义应用程序的环境,并使用Docker Compose定义应用程序的服务。然后,你可以使用CI

红楼梦解析PPT模板:古典名著的现代解读.pptx

红楼梦解析PPT模板:古典名著的现代解读.pptx

大型语言模型应用于零镜头文本风格转换的方法简介

+v:mala2277获取更多论文一个使用大型语言模型进行任意文本样式转换的方法Emily Reif 1页 达芙妮伊波利托酒店1,2 * 袁安1 克里斯·卡利森-伯奇(Chris Callison-Burch)Jason Wei11Google Research2宾夕法尼亚大学{ereif,annyuan,andycoenen,jasonwei}@google.com{daphnei,ccb}@seas.upenn.edu摘要在本文中,我们利用大型语言模型(LM)进行零镜头文本风格转换。我们提出了一种激励方法,我们称之为增强零激发学习,它将风格迁移框架为句子重写任务,只需要自然语言的指导,而不需要模型微调或目标风格的示例。增强的零触发学习很简单,不仅在标准的风格迁移任务(如情感)上,而且在自然语言转换(如“使这个旋律成为旋律”或“插入隐喻”)上都表现出了1介绍语篇风格转换是指在保持语篇整体语义和结构的前提下,重新编写语篇,使其包含其他或替代的风格元素。虽然�

xpath爬虫亚马逊详情页

以下是使用XPath爬取亚马逊详情页的步骤: 1. 首先,使用requests库获取亚马逊详情页的HTML源代码。 2. 然后,使用lxml库的etree模块解析HTML源代码。 3. 接着,使用XPath表达式提取所需的数据。 4. 最后,将提取的数据保存到本地或者数据库中。 下面是一个简单的示例代码,以提取亚马逊商品名称为例: ```python import requests from lxml import etree # 设置请求头 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x

基于Internet的数据安全上传软件设计.doc

基于Internet的数据安全上传软件设计.doc