nn.AdaptiveAvgPool2d(1)
时间: 2023-07-06 20:14:44 浏览: 117
在Keras中,可以使用GlobalAveragePooling2D来实现类似的功能。代码如下:
```python
from keras.layers import GlobalAveragePooling2D
global_avg_pool = GlobalAveragePooling2D()
```
其中,GlobalAveragePooling2D()默认会将输入的二维特征图降维为1维,即将每个通道上的特征图进行平均池化,得到一个通道的平均值,最终得到一个形状为(batch_size, channels)的输出。
相关问题
nn.AdaptiveAvgPool2d
nn.AdaptiveAvgPool2d 是 PyTorch 中的一个池化层,它可以动态地将输入张量的大小调整为指定的输出大小并进行平均池化操作。这个层通常用在卷积神经网络中,用于将卷积层的输出张量形状调整为固定大小的特征图。与传统的 AvgPool2d 不同的是,nn.AdaptiveAvgPool2d 不需要指定池化窗口大小,而是直接指定输出大小。这个层的输入和输出形状如下:
输入形状:$(N, C, H_{in}, W_{in})$
输出形状:$(N, C, H_{out}, W_{out})$
其中,$N$ 表示批次大小,$C$ 表示输入通道数,$H_{in}$ 和 $W_{in}$ 表示输入特征图的高度和宽度,$H_{out}$ 和 $W_{out}$ 表示输出特征图的高度和宽度。nn.AdaptiveAvgPool2d 的使用示例如下:
```
import torch.nn as nn
# 将输入特征图的大小调整为 (7, 7)
adaptive_avg_pool = nn.AdaptiveAvgPool2d((7, 7))
x = torch.randn(1, 64, 10, 10)
y = adaptive_avg_pool(x)
print(y.shape) # torch.Size([1, 64, 7, 7])
```
nn.adaptiveavgpool2d
nn.AdaptiveAvgPool2d 是 PyTorch 中的一个适配平均池化层。它可以根据输入的形状动态地计算输出形状,并在输出上进行平均池化。它与 nn.AvgPool2d 不同,nn.AvgPool2d 需要事先指定池化窗口的大小。
阅读全文