解释以下代码:import pandas as pd data = pd.read_excel('../数据表/1.xlsx') import numpy as np X = np.array(data) def kmeans(X, k, max_iter=100): # 随机选择k个质心 centroids = X[np.random.choice(X.shape[0], k, replace=False), :] for i in range(max_iter): # 分配样本到簇中 distances = np.sqrt(((X - centroids[:, np.newaxis])**2).sum(axis=2)) labels = np.argmin(distances, axis=0) # 计算每个簇的质心 new_centroids = np.array([X[labels == j].mean(axis=0) for j in range(k)]) # 判断质心是否发生变化 if np.allclose(centroids, new_centroids): break centroids = new_centroids return labels, centroids labels, centroids = kmeans(X, 4)
时间: 2024-01-03 22:05:34 浏览: 73
循环打开excel 并平均.zip_excel_循环 文件夹_打开文件夹下所有excel并进行平均
这段代码是实现了K-Means聚类算法。K-Means是一种无监督机器学习算法,用于将数据点分成k个不同的簇,其中每个簇的数据点都彼此相似。以下是代码的解释:
1. 首先用pandas库读取Excel数据表"../数据表/1.xlsx"并将其转换为numpy数组X。
2. 定义了一个kmeans函数,它接受三个参数:X是数据集,k是簇的数量,max_iter是迭代的最大次数。
3. 在kmeans函数中,随机初始化k个质心并将其存储在centroids变量中。
4. 进入迭代过程,其中每次迭代都执行以下步骤:
a. 计算每个样本点到每个质心的距离,并将其存储在distances变量中。
b. 找到每个样本点距离最近的质心,并将其归为相应的簇中,将结果存储在labels变量中。
c. 计算每个簇的新质心,并将其存储在new_centroids变量中。
d. 检查质心是否发生变化,如果没有,则退出迭代过程。
5. 最后,返回labels和centroids变量,它们分别是每个样本点的簇标签和每个簇的质心。在代码的最后一行,我们将数据集X分成了4个簇。
阅读全文