这段代码是什么意思:X = npData[:,:2] Y = torch.tensor(npData[:,2], dtype = torch.float) edgeList = [] Adj = np.zeros((X.shape[0],X.shape[0])) dist = 0.015 size = X.shape[0] for i in range(size): for j in range(size): if i!=j: d = (X[i][0]-X[j][0])**2 + (X[i][1] - X[j][1])**2 if(d<dist): edgeList.append([i,j]) Adj[i][j] = 1 edgeList.append([i,i]) edges = np.array(edgeList) edges = edges.T edges
时间: 2023-03-07 16:17:17 浏览: 332
这段代码的意思是:首先,从npData中提取出前两列,然后从npData中提取出第三列,并使用torch.tensor()函数将其转换成浮点类型。接着,创建一个空列表edgeList,一个全零的二维数组Adj,一个距离常量dist,以及X的行数size。然后,遍历每一行,计算每个元素与其它元素的距离,如果距离小于dist,则将该行的索引和其它行的索引加入edgeList中,并将Adj[i][j]设置为1;最后,将edgeList转换成矩阵形式,即edges。
相关问题
def __getitem__(self, idx): i = np.random.randint(0, len(self.data) - (self.ctx_len + 1)) # cheat: pick a random spot in dataset chunk = self.data[i:i+self.ctx_len+1] dix = [self.stoi[s] for s in chunk] x = torch.tensor(dix[:-1], dtype=torch.long) y = torch.tensor(dix[1:], dtype=torch.long) return x, y
这段代码是`Dataset`类的`__getitem__`方法。该方法用于实现索引操作,通过索引获取数据集中的一个样本。
首先,代码使用`np.random.randint(0, len(self.data) - (self.ctx_len + 1))`随机生成一个索引`i`,该索引用于选择数据集中的一个随机位置作为样本的起始位置。这里使用了`np.random.randint`函数从0到`(self.ctx_len + 1)`之间生成一个随机整数,用于确定样本的起始位置。
然后,代码从数据集中选取从起始位置`i`到`(i+self.ctx_len+1)`之间的一段数据作为样本的片段,存储在变量`chunk`中。
接下来,代码使用`self.stoi[s]`将`chunk`中的每个单词映射为对应的索引,并将结果存储在列表`dix`中。
然后,代码将列表`dix[:-1]`转换为一个PyTorch张量,并将其命名为`x`。这里使用了切片操作`[:-1]`来获取除最后一个元素之外的所有元素。
代码接着将列表`dix[1:]`转换为另一个PyTorch张量,并将其命名为`y`。这里使用了切片操作`[1:]`来获取除第一个元素之外的所有元素。
最后,代码返回张量`x`和张量`y`作为样本的输入和目标。
注意,这段代码还使用了`torch`和`np`模块,但是没有在代码中导入这些模块,所以你可能需要在代码开头添加以下导入语句:
```python
import torch
import numpy as np
```
下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))
在这段代码中,可能存在以下错误:
1. 缺少必要的库或模块。
2. training_set 的文件路径是否正确。
3. training_set 的数据处理是否正确。
4. LSTM 模型的定义是否正确。
5. 训练和预测的代码是否正确。
下面是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
# 读取数据
training_set = pd.read_csv('CX2-36_1971.csv')
training_set = training_set.iloc[:, 1:2].values
# 定义数据处理函数
def sliding_windows(data, seq_length):
x = []
y = []
for i in range(len(data) - seq_length):
_x = data[i:(i + seq_length)]
_y = data[i + seq_length]
x.append(_x)
y.append(_y)
return np.array(x), np.array(y)
# 对数据进行归一化处理
sc = MinMaxScaler()
training_data = sc.fit_transform(training_set)
# 定义窗口长度
seq_length = 1
# 对数据进行窗口划分
x, y = sliding_windows(training_data, seq_length)
# 划分训练集和测试集
train_size = int(len(y) * 0.8)
test_size = len(y) - train_size
dataX = Variable(torch.Tensor(np.array(x)))
dataY = Variable(torch.Tensor(np.array(y)))
trainX = Variable(torch.Tensor(np.array(x[1:train_size])))
trainY = Variable(torch.Tensor(np.array(y[1:train_size])))
testX = Variable(torch.Tensor(np.array(x[train_size:len(x)])))
testY = Variable(torch.Tensor(np.array(y[train_size:len(y)])))
# 定义 LSTM 模型
class LSTM(nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.num_classes = num_classes
self.num_layers = num_layers
self.input_size = input_size
self.hidden_size = hidden_size
self.seq_length = seq_length
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
# Propagate input through LSTM
ula, (h_out, _) = self.lstm(x, (h_0, c_0))
h_out = h_out.view(-1, self.hidden_size)
out = self.fc(h_out)
return out
# 定义训练参数
num_epochs = 2000
learning_rate = 0.001
input_size = 1
hidden_size = 2
num_layers = 1
num_classes = 1
# 实例化 LSTM 模型
lstm = LSTM(num_classes, input_size, hidden_size, num_layers)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
# 训练模型
runn = 10
Y_predict = np.zeros((runn, len(dataY)))
for i in range(runn):
print('Run: ' + str(i + 1))
for epoch in range(num_epochs):
outputs = lstm(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
lstm.eval()
train_predict = lstm(dataX)
data_predict = train_predict.data.numpy()
dataY_plot = dataY.data.numpy()
# 对结果进行反归一化
data_predict = sc.inverse_transform(data_predict)
dataY_plot = sc.inverse_transform(dataY_plot)
Y_predict[i,:] = np.transpose(np.array(data_predict))
Y_Predict = np.mean(Y_predict, axis=0)
Y_Predict_T = np.transpose(np.array(Y_Predict))
```
阅读全文