for (img1_file, img2_file) in tqdm(img_pairs): img1 = np.array(imread(img1_file)) img2 = np.array(imread(img2_file)) if args.arch == 'StrainNet_l' and img1.ndim == 3: img1 = img1[:,:,1] img2 = img2[:,:,1] img1 = img1/255 img2 = img2/255 if img1.ndim == 2: img1 = img1[np.newaxis, ...] img2 = img2[np.newaxis, ...] img1 = img1[np.newaxis, ...] img2 = img2[np.newaxis, ...] img1 = torch.from_numpy(img1).float() img2 = torch.from_numpy(img2).float() if args.arch == 'StrainNet_h' or args.arch == 'StrainNet_f': img1 = torch.cat([img1,img1,img1],1) img2 = torch.cat([img2,img2,img2],1) input_var = torch.cat([img1,img2],1) elif img1.ndim == 3: img1 = np.transpose(img1, (2, 0, 1)) img2 = np.transpose(img2, (2, 0, 1)) img1 = torch.from_numpy(img1).float() img2 = torch.from_numpy(img2).float() input_var = torch.cat([img1, img2]).unsqueeze(0) # compute output input_var = input_var.to(device) output = model(input_var) if args.arch == 'StrainNet_h' or args.arch == 'StrainNet_l': output = torch.nn.functional.interpolate(input=output, scale_factor=2, mode='bilinear') output_to_write = output.data.cpu() output_to_write = output_to_write.numpy() disp_x = output_to_write[0,0,:,:] disp_x = - disp_x * args.div_flow + 1 disp_y = output_to_write[0,1,:,:] disp_y = - disp_y * args.div_flow + 1 filenamex = save_path/'{}{}'.format(img1_file.stem[:-1], '_disp_x') filenamey = save_path/'{}{}'.format(img1_file.stem[:-1], '_disp_y') np.savetxt(filenamex + '.csv', disp_x,delimiter=',') np.savetxt(filenamey + '.csv', disp_y,delimiter=',')

时间: 2024-02-14 10:25:06 浏览: 163
ZIP

PairsTrading_FEX.zip_Pairs_PairsTrading_FEX_pairs trading_tradin

这代码是一个图像处理的代码片段,它的作用是对一对图像进行处理并输出结果。 首先,代码使用imread函数读取两个图像文件(img1_file和img2_file),然后将其转换为numpy数组(img1和img2)。 接下来,根据参数args.arch的值和图像的维度,对图像进行一些预处理操作。如果args.arch等于'StrainNet_l'并且图像是三维的,则只保留第二个通道。然后将图像的像素值归一化到0到1之间。 然后,根据图像的维度进行不同的处理。如果图像是二维的,则添加一个额外的维度,并将其转换为Tensor类型。如果args.arch等于'StrainNet_h'或'StrainNet_f',则将图像在通道维度上进行复制。最后,将两个图像在通道维度上拼接起来,得到input_var。 如果图像是三维的,则对其进行转置操作,并转换为Tensor类型。然后将两个图像拼接起来,并在第0维度上添加一个额外的维度,得到input_var。 接下来,将input_var传入模型(model)进行计算得到输出(output)。如果args.arch等于'StrainNet_h'或'StrainNet_l',则对输出进行双线性插值操作。 然后,将输出转移到CPU上,并转换为numpy数组(output_to_write)。根据需要,将输出进行一些后处理操作,最终得到disp_x和disp_y。 最后,将disp_x和disp_y保存为CSV文件,文件名根据输入图像的文件名生成,并保存在save_path路径下。 以上就是这段代码的功能和流程。如果有其他问题,请随时提问!
阅读全文

相关推荐

from pdb import set_trace as st import os import numpy as np import cv2 import argparse parser = argparse.ArgumentParser('create image pairs') parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges') parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg') parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB') parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000) parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true') args = parser.parse_args() for arg in vars(args): print('[%s] = ' % arg, getattr(args, arg)) splits = os.listdir(args.fold_A) for sp in splits: img_fold_A = os.path.join(args.fold_A, sp) img_fold_B = os.path.join(args.fold_B, sp) img_list = os.listdir(img_fold_A) if args.use_AB: img_list = [img_path for img_path in img_list if '_A.' in img_path] num_imgs = min(args.num_imgs, len(img_list)) print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) img_fold_AB = os.path.join(args.fold_AB, sp) if not os.path.isdir(img_fold_AB): os.makedirs(img_fold_AB) print('split = %s, number of images = %d' % (sp, num_imgs)) for n in range(num_imgs): name_A = img_list[n] path_A = os.path.join(img_fold_A, name_A) if args.use_AB: name_B = name_A.replace('_A.', '_B.') else: name_B = name_A path_B = os.path.join(img_fold_B, name_B) if os.path.isfile(path_A) and os.path.isfile(path_B): name_AB = name_A if args.use_AB: name_AB = name_AB.replace('_A.', '.') # remove _A path_AB = os.path.join(img_fold_AB, name_AB) im_A = cv2.imread(path_A, cv2.IMREAD_COLOR) im_B = cv2.imread(path_B, cv2.IMREAD_COLOR) im_AB = np.concatenate([im_A, im_B], 1) cv2.imwrite(path_AB, im_AB),解释上述代码,并告诉我怎么设置文件夹格式

x_train, t_train, x_test, t_test = load_data('F:\\2023\\archive\\train') network = DeepConvNet() network.load_params("deep_convnet_params.pkl") print("calculating test accuracy ... ") sampled = 1000 x_test = x_test[:sampled] t_test = t_test[:sampled] prediect_result = [] for i in x_test: i = np.expand_dims(i, 0) y = network.predict(i) _result = network.predict(i) _result = softmax(_result) result = np.argmax(_result) prediect_result.append(int(result)) acc_number = 0 err_number = 0 for i in range(len(prediect_result)): if prediect_result[i] == t_test[i]: acc_number += 1 else: err_number += 1 print("预测正确数:", acc_number) print("预测错误数:", err_number) print("预测总数:", x_test.shape[0]) print("预测正确率:", acc_number / x_test.shape[0]) classified_ids = [] acc = 0.0 batch_size = 100 for i in range(int(x_test.shape[0] / batch_size)): tx = x_test[i * batch_size:(i + 1) * batch_size] tt = t_test[i * batch_size:(i + 1) * batch_size] y = network.predict(tx, train_flg=False) y = np.argmax(y, axis=1) classified_ids.append(y) acc += np.sum(y == tt) acc = acc / x_test.shape[0] classified_ids = np.array(classified_ids) classified_ids = classified_ids.flatten() max_view = 20 current_view = 1 fig = plt.figure() fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.2, wspace=0.2) mis_pairs = {} for i, val in enumerate(classified_ids == t_test): if not val: ax = fig.add_subplot(4, 5, current_view, xticks=[], yticks=[]) ax.imshow(x_test[i].reshape(28, 28), cmap=plt.cm.gray_r, interpolation='nearest') mis_pairs[current_view] = (t_test[i], classified_ids[i]) current_view += 1 if current_view > max_view: break print("======= 错误预测结果展示 =======") print("{view index: (label, inference), ...}") print(mis_pairs) plt.show()

详细解释一下这段代码,每一句给出详细注解:results_df = pd.DataFrame(columns=['image_path', 'dataset', 'scene', 'rotation_matrix', 'translation_vector']) for dataset_scene in tqdm(datasets_scenes, desc='Running pipeline'): dataset, scene = dataset_scene.split('/') img_dir = f"{INPUT_ROOT}/{'train' if DEBUG else 'test'}/{dataset}/{scene}/images" if not os.path.exists(img_dir): continue feature_dir = f"{DATA_ROOT}/featureout/{dataset}/{scene}" os.system(f"rm -rf {feature_dir}") os.makedirs(feature_dir) fnames = sorted(glob(f"{img_dir}/*")) print('fnames',len(fnames)) # Similarity pipeline if sim_th: index_pairs, h_w_exif = get_image_pairs_filtered(similarity_model, fnames=fnames, sim_th=sim_th, min_pairs=20, all_if_less=20) else: index_pairs, h_w_exif = get_img_pairs_all(fnames=fnames) # Matching pipeline matching_pipeline(matching_model=matching_model, fnames=fnames, index_pairs=index_pairs, feature_dir=feature_dir) # Colmap pipeline maps = colmap_pipeline(img_dir, feature_dir, h_w_exif=h_w_exif) # Postprocessing results = postprocessing(maps, dataset, scene) # Create submission for fname in fnames: image_id = '/'.join(fname.split('/')[-4:]) if image_id in results: R = results[image_id]['R'].reshape(-1) T = results[image_id]['t'].reshape(-1) else: R = np.eye(3).reshape(-1) T = np.zeros((3)) new_row = pd.DataFrame({'image_path': image_id, 'dataset': dataset, 'scene': scene, 'rotation_matrix': arr_to_str(R), 'translation_vector': arr_to_str(T)}, index=[0]) results_df = pd.concat([results_df, new_row]).reset_index(drop=True)

使用代码import numpy as np import pandas as pd from scipy.stats import pearsonr data = pd.read_csv('os2.csv') gene_pairs = pd.read_csv('os1.csv') gene_pair_names = gene_pairs['基因对名称'].values pearson_coeffs = [] for gene_pair in gene_pair_names: gene1, gene2 = gene_pair.split('_') expression1 = data[gene1].values expression2 = data[gene2].values coeff, _ = pearsonr(expression1, expression2) pearson_coeffs.append(coeff)出现了Traceback (most recent call last): File "/home/jialinlu/miniconda3[闪电]b/python3.9/site-packages/pandas/core/indexes/base.py", line 3621, in get_loc return self._engine.get_loc(casted_key) File "pandas/_libs/index.pyx", line 136, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 163, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 5198, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 5206, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 'Os01t0113150' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 4, in <module> File "/home/jialinlu/miniconda3[闪电]b/python3.9/site-packages/pandas/core/frame.py", line 3505, in __getitem__ indexer = self.columns.get_loc(key) File "/home/jialinlu/miniconda3[闪电]b/python3.9/site-packages/pandas/core/indexes/base.py", line 3623, in get_loc raise KeyError(key) from err KeyError: 'Os01t0113150'的报错是什么原因

详细解释一下这段代码,每一句都要进行注解:for dataset in datasets: print(dataset) if dataset not in out_results: out_results[dataset] = {} for scene in data_dict[dataset]: print(scene) # Fail gently if the notebook has not been submitted and the test data is not populated. # You may want to run this on the training data in that case? img_dir = f'{src}/test/{dataset}/{scene}/images' if not os.path.exists(img_dir): continue # Wrap the meaty part in a try-except block. try: out_results[dataset][scene] = {} img_fnames = [f'{src}/test/{x}' for x in data_dict[dataset][scene]] print (f"Got {len(img_fnames)} images") feature_dir = f'featureout/{dataset}{scene}' if not os.path.isdir(feature_dir): os.makedirs(feature_dir, exist_ok=True) t=time() index_pairs = get_image_pairs_shortlist(img_fnames, sim_th = 0.5644583, # should be strict min_pairs = 33, # we select at least min_pairs PER IMAGE with biggest similarity exhaustive_if_less = 20, device=device) t=time() -t timings['shortlisting'].append(t) print (f'{len(index_pairs)}, pairs to match, {t:.4f} sec') gc.collect() t=time() if LOCAL_FEATURE != 'LoFTR': detect_features(img_fnames, 2048, feature_dir=feature_dir, upright=True, device=device, resize_small_edge_to=600 ) gc.collect() t=time() -t timings['feature_detection'].append(t) print(f'Features detected in {t:.4f} sec') t=time() match_features(img_fnames, index_pairs, feature_dir=feature_dir,device=device) else: match_loftr(img_fnames, index_pairs, feature_dir=feature_dir, device=device, resize_to=(600, 800)) t=time() -t timings['feature_matching'].append(t) print(f'Features matched in {t:.4f} sec') database_path = f'{feature_dir}/colmap.db' if os.path.isfile(database_path): os.remove(database_path) gc.collect() import_into_colmap(img_dir, feature_dir=feature_dir,database_path=database_path) output_path = f'{feature_dir}/colmap_rec_{LOCAL_FEATURE}' t=time() pycolmap.match_exhaustive(database_path) t=time() - t timings['RANSAC'].append(t) print(f'RANSAC in {t:.4f} sec')

import pandas as pd data = pd.read_excel('C:\Users\home\Desktop\新建文件夹(1)\支撑材料\数据\111.xlsx','Sheet5',index_col=0) data.to_csv('data.csv',encoding='utf-8') import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv(r"data.csv", encoding='utf-8', index_col=0).reset_index(drop=True) df from sklearn import preprocessing df = preprocessing.scale(df) df covX = np.around(np.corrcoef(df.T),decimals=3) covX featValue, featVec= np.linalg.eig(covX.T) featValue, featVec def meanX(dataX): return np.mean(dataX,axis=0) average = meanX(df) average m, n = np.shape(df) m,n data_adjust = [] avgs = np.tile(average, (m, 1)) avgs data_adjust = df - avgs data_adjust covX = np.cov(data_adjust.T) covX featValue, featVec= np.linalg.eig(covX) featValue, featVec tot = sum(featValue) var_exp = [(i / tot) for i in sorted(featValue, reverse=True)] cum_var_exp = np.cumsum(var_exp) plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.show() eigen_pairs = [(np.abs(featValue[i]), featVec[:, i]) for i in range(len(featValue))] eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) X_train_pca = data_adjust.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(data_adjust), colors, markers): plt.scatter(data_adjust,data_adjust, c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.show()

详细解释一下这段代码,每一句都要进行注解:def get_image_pairs_shortlist(fnames, sim_th = 0.6, # should be strict min_pairs = 20, exhaustive_if_less = 20, device=torch.device('cpu')): num_imgs = len(fnames) if num_imgs <= exhaustive_if_less: return get_img_pairs_exhaustive(fnames) model = timm.create_model('tf_efficientnet_b7', checkpoint_path='/kaggle/input/tf-efficientnet/pytorch/tf-efficientnet-b7/1/tf_efficientnet_b7_ra-6c08e654.pth') model.eval() descs = get_global_desc(fnames, model, device=device) #这段代码使用 PyTorch 中的 torch.cdist 函数计算两个矩阵之间的距离,其中参数 descs 是一个矩阵,表示一个数据集中的所有样本的特征向量。函数将计算两个矩阵的 p 范数距离,即对于矩阵 A 和 B,其 p 范数距离为: #dist_{i,j} = ||A_i - B_j||_p #其中 i 和 j 分别表示矩阵 A 和 B 中的第 i 和 j 行,||.||_p 表示 p 范数。函数的返回值是一个矩阵,表示所有样本之间的距离。 # detach() 和 cpu() 方法是为了将计算结果从 GPU 转移到 CPU 上,并将其转换为 NumPy 数组。最终的结果将会是一个 NumPy 数组。 dm = torch.cdist(descs, descs, p=2).detach().cpu().numpy() # removing half mask = dm <= sim_th total = 0 matching_list = [] ar = np.arange(num_imgs) already_there_set = [] for st_idx in range(num_imgs-1): mask_idx = mask[st_idx] to_match = ar[mask_idx] if len(to_match) < min_pairs: to_match = np.argsort(dm[st_idx])[:min_pairs] for idx in to_match: if st_idx == idx: continue if dm[st_idx, idx] < 1000: matching_list.append(tuple(sorted((st_idx, idx.item())))) total+=1 matching_list = sorted(list(set(matching_list))) return matching_list

最新推荐

recommend-type

java+sql server项目之科帮网计算机配件报价系统源代码.zip

sql server+java项目之科帮网计算机配件报价系统源代码
recommend-type

【java毕业设计】智慧社区老人健康监测门户.zip

有java环境就可以运行起来 ,zip里包含源码+论文+PPT, 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上
recommend-type

【java毕业设计】智慧社区心理咨询平台(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理