用python利用鸢尾花数据原理实现pca算法

时间: 2023-05-14 22:01:45 浏览: 35
主成分分析(PCA)是一种常用的维度降低算法,它的主要思想是利用线性变换将高维数据映射到低维空间中。使用PCA算法可以消除高维数据中的冗余、相关信息,从而提高模型训练的效率和准确率。 Python是一种强大的编程语言,拥有丰富的科学计算库和工具。我们可以使用其中的NumPy和Scikit-learn库来实现PCA算法。 首先,需要导入必要的库: ```python import numpy as np from sklearn.datasets import load_iris import matplotlib.pyplot as plt ``` 其中,load_iris函数用于加载鸢尾花数据,返回一个包含样本数据的Bunch对象。 接下来,读取数据并计算协方差矩阵: ```python iris = load_iris() X = iris.data n_samples, n_features = X.shape mean = np.mean(X, axis=0) X_centered = X - mean covariance_matrix = np.cov(X_centered.T) ``` 其中,np.mean函数用于计算样本数据的均值,np.cov函数则用于计算协方差矩阵。 接下来,使用numpy的linalg.eig函数计算协方差矩阵的特征值和特征向量: ```python eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix) ``` 其中,eigenvalues包含了协方差矩阵的特征值,eigenvectors则包含了对应的特征向量。 最后,根据特征值排序并选择前k个特征向量,将样本数据投影到选择出的主成分上: ```python k = 2 idx = eigenvalues.argsort()[::-1][:k] eigenvalues = eigenvalues[idx] eigenvectors = eigenvectors[:,idx] X_pca = np.dot(X_centered, eigenvectors) ``` 其中,argsort函数将特征值从大到小排序,[::-1]则表示逆序,最后选择前k个特征向量。 最后,我们可以使用matplotlib库将降维后的数据可视化: ```python plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_pca[iris.target == i, 0], X_pca[iris.target == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.xlabel('PC1') plt.ylabel('PC2') plt.show() ``` 如此便实现了鸢尾花数据的PCA算法。

相关推荐

### 回答1: PCA(Principal Component Analysis)是一种常用的降维方法,可以将高维数据降到低维空间中。在Python中,可以使用scikit-learn库中的PCA类来实现PCA降维。 下面是一个简单的示例代码: python from sklearn.decomposition import PCA import numpy as np # 创建一个4维数据集 X = np.array([[1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12], [4, 8, 12, 16]]) # 创建PCA对象,将数据降到2维空间中 pca = PCA(n_components=2) # 对数据进行降维 X_new = pca.fit_transform(X) # 输出降维后的数据 print(X_new) 在上面的代码中,我们首先创建了一个4维的数据集X。然后创建了一个PCA对象,并将数据降到了2维空间中。最后,使用fit_transform()方法对数据进行降维,并输出降维后的数据。 需要注意的是,PCA降维的前提是数据集中的各个维度之间要有一定的相关性,否则降维后的数据可能会失去原有的信息。 ### 回答2: PCA(Principal Component Analysis,主成分分析)是一种常用的降维算法,用于对高维数据进行降维处理。在Python中,我们可以使用scikit-learn库中的PCA模块来实现PCA算法。 首先,我们需要导入所需的库和数据集。使用scikit-learn库中的datasets模块,我们可以方便地加载一些自带的数据集,如鸢尾花数据集(Iris dataset)。 接下来,我们创建一个PCA对象,并设置所需的参数。其中,n_components参数表示我们希望降到的维度数。一般来说,我们可以通过观察数据的方差解释比例图来选择一个合适的降维维度。 然后,我们利用fit_transform()函数来对数据进行降维处理。该函数会自动计算并返回降维后的结果。我们可以将降维后的数据存储在一个新的变量中,以备后续使用。 最后,我们可以通过调用explained_variance_ratio_属性来获取每个主成分所解释的方差比例。这个属性返回一个数组,数组的长度等于降维后的维度数。我们还可以使用explained_variance_属性来获取每个主成分所解释的方差值。 需要注意的是,PCA算法对数据的分布有一定的假设,即数据应该是呈正态分布的。因此,在应用PCA之前,可能需要对数据进行预处理,例如将其标准化。 综上所述,通过使用scikit-learn库中的PCA模块,我们可以方便地进行PCA降维处理,并获取到降维后的数据以及每个主成分所解释的方差比例。这对于数据分析和特征工程等领域都非常有用。 ### 回答3: PCA是一种常用的统计技术,用于降维和数据压缩。PCA的全称是主成分分析(Principal Component Analysis),可以通过线性变换将相关变量转化为一组线性无关的主成分,从而减少数据的维度。 在Python中,我们可以使用scikit-learn库来进行PCA分析。首先,我们需要导入相应的库和数据。然后,我们使用sklearn.decomposition模块中的PCA类来进行主成分分析。 首先,我们需要创建一个PCA对象,可以设置主成分的个数、是否进行中心化等参数。然后,使用fit()方法对数据进行拟合,生成主成分。可以使用explained_variance_ratio_属性查看每个主成分所解释的方差比例,可以帮助我们选择恰当的主成分个数。 接下来,可以使用transform()方法将原始数据转化为主成分表示。转化后的数据具有更低的维度,可以用于可视化、聚类和分类等任务。 最后,我们可以使用matplotlib等库来可视化主成分分析的结果。例如,可以绘制累计解释方差比例的曲线,以判断选择多少主成分合适;也可以使用散点图将数据转化为二维主成分空间进行可视化。 总的来说,PCA是一种非常有用的数据降维技术,可以在处理高维数据时帮助我们减少冗余信息、提高计算效率,并且方便我们对数据进行可视化和分析。在Python中,通过scikit-learn库提供的PCA类,我们可以很方便地进行PCA分析,并得到主成分表示的数据。
好的,我可以为您提供鸢尾花数据集线性回归算法的代码实现,并展示3D的可视化视图。需要注意的是,线性回归算法主要用于解决回归问题,而鸢尾花数据集是一个分类问题,所以我们需要使用逻辑回归算法来解决鸢尾花数据集的分类问题。 以下是一个简单的Python实现示例: python import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 对数据集进行PCA降维 pca = PCA(n_components=3) X_pca = pca.fit_transform(X) # 可视化降维结果 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X_pca[:,0], X_pca[:,1], X_pca[:,2], c=y) ax.set_xlabel('PCA1') ax.set_ylabel('PCA2') ax.set_zlabel('PCA3') plt.show() # 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 使用逻辑回归算法进行分类 logreg = LogisticRegression() logreg.fit(X_train, y_train) # 在测试集上进行预测 y_pred = logreg.predict(X_test) # 计算预测准确率 accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) 在以上代码中,我们使用PCA()函数将4个特征降维为3个特征,并使用mpl_toolkits.mplot3d库中的Axes3D函数创建一个3D坐标系,使用scatter()函数进行可视化,其中c=y表示按照标签进行颜色分类。接着,我们使用train_test_split()函数将数据集划分为训练集和测试集,使用LogisticRegression()函数进行逻辑回归算法的建模和训练,使用predict()函数在测试集上进行预测,并使用accuracy_score()函数计算预测准确率。 需要注意的是,3D可视化只适用于低维降维结果,因为高维数据无法在三维空间中进行展示。如果您需要更高维度的可视化结果,可以考虑使用其他可视化方式,比如热力图、等高线图等。
好的,我们可以先来看一下PCA的基本思想: PCA(Principal Component Analysis)即主成分分析,是一种常用的数据降维方法。其基本思想是将高维数据通过线性变换映射到低维空间中,使得映射后的数据保留原始数据的大部分信息。这个线性变换就是将数据投影到其最重要(方差最大)的特征上。 下面是一个简单的PCA实现: python import numpy as np def pca(X, n_components): # 去中心化 X_mean = np.mean(X, axis=0) X = X - X_mean # 计算协方差矩阵 cov_mat = np.cov(X, rowvar=False) # 计算特征值和特征向量 eig_vals, eig_vecs = np.linalg.eig(cov_mat) # 对特征值从大到小排序 sorted_index = np.argsort(eig_vals)[::-1] # 取前n_components个特征向量 eig_vecs = eig_vecs[:, sorted_index] eig_vecs = eig_vecs[:, :n_components] # 将数据投影到新的坐标系上 X_transformed = np.dot(X, eig_vecs) return X_transformed 这个函数的输入参数为X和n_components,其中X为原始数据,n_components为要保留的特征数量。函数首先对原始数据进行去中心化,然后计算协方差矩阵和其特征值与特征向量。特征值表示特征向量在新的坐标系上的重要性,我们需要按照特征值从大到小的顺序对特征向量进行排序,并选择前n_components个特征向量。最后,我们将原始数据投影到新的坐标系上,得到降维后的数据。 接下来,我们可以使用Scikit-Learn中的PCA方法对比一下: python from sklearn.decomposition import PCA pca_sk = PCA(n_components=2) X_transformed_sk = pca_sk.fit_transform(X) Scikit-Learn中的PCA方法同样需要指定要保留的特征数量,这里我们选取2个特征。PCA对象有一个fit_transform方法,它可以对原始数据进行降维处理,并返回降维后的数据。下面我们可以将两种方法得到的结果进行比较: python print(np.allclose(X_transformed, X_transformed_sk)) 这个函数会输出True或False,表示两种方法得到的结果是否相同。如果输出True,则说明我们的PCA实现是正确的。
python import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris # 加载鸢尾花数据集 data = load_iris() # 样本标签 y = data.target # 样本特征 x = data.data # 加载PCA算法,设置降维后主成分数目为2 pca = PCA(n_components = 2) # 对样本进行降维 reduced_x = pca.fit_transform(x) # 在平面中画出降维后的样本点的分布 red_x, red_y = [], [] blue_x, blue_y = [], [] green_x, green_y = [], [] for i in range(len(reduced_x)): if y[i] == 0: red_x.append(reduced_x[i][0]) red_y.append(reduced_x[i][1]) elif y[i] == 1: blue_x.append(reduced_x[i][0]) blue_y.append(reduced_x[i][1]) else: green_x.append(reduced_x[i][0]) green_y.append(reduced_x[i][1]) # 用散点图在平面中画出降维后的样本点 plt.scatter(red_x, red_y, c='r', marker='x') plt.scatter(blue_x, blue_y, c='b', marker='D') plt.scatter(green_x, green_y, c='g', marker='.') # 显示图像 plt.show() 代码无误。 代码功能: 1. 载入 matplotlib.pyplot 模块,用于绘制数据可视化图表。 2. 载入 sklearn.decomposition 模块中的PCA类,用于进行数据降维。 3. 载入 sklearn.datasets 模块中的load_iris函数,用于加载鸢尾花数据集。 4. 加载鸢尾花数据集,其中 data.data 为样本特征,data.target 为样本标签。 5. 创建一个 PCA 类的实例 pca,设置主成分数目为2,用于对样本进行降维。 6. 使用 fit_transform() 方法对样本进行降维,得到降维后的样本 reduced_x。 7. 遍历降维后的样本 reduced_x,根据样本标签 y 的不同将样本点分为三类,并将它们的坐标分别存储在 red_x, red_y、blue_x, blue_y 和 green_x, green_y 中。 8. 使用 plt.scatter() 函数画散点图,用颜色和标记区分三类样本点,并在平面中展示降维后的样本点分布。 9. 使用 plt.show() 函数显示图像。

最新推荐

Python sklearn库实现PCA教程(以鸢尾花分类为例)

我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布。样本数据结构如下图: 其中样本总数为150,鸢尾花的类别有三种,分别标记为0,1,2 代码 ...

python实现PCA降维的示例详解

今天小编就为大家分享一篇python实现PCA降维的示例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

线性代数底层运算-方阵乘法

线性代数底层运算——方阵乘法

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

css怎么写隐藏下拉列表

您可以使用 CSS 中的 display 属性来隐藏下拉列表。具体方法是: 1. 首先,在 HTML 中找到您想要隐藏的下拉列表元素的选择器。例如,如果您的下拉列表元素是一个 select 标签,则可以使用以下选择器:`select { }` 2. 在该选择器中添加 CSS 属性:`display: none;`,即可将该下拉列表元素隐藏起来。 例如,以下是一个隐藏下拉列表的 CSS 代码示例: ```css select { display: none; } ``` 请注意,这将隐藏所有的 select 元素。如果您只想隐藏特定的下拉列表,请使用该下拉列表的选择器来替代 sel

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.